MINISTERUL GEOLOGIEI INSTITUTUL DE GEOLOGIE ȘI GEOFIZICĂ

ANUARUL INSTITUTULUI de Geologie și geofizică

VOL. LIX

lucrările congresului al XII-lea al asociației geologice carpato – balcanice

STRATIGRAFIE ȘI PALEONTOLOGIE

BUCUREȘTI 1983

Les auteurs assument la responsabilité des données publiées

MINISTERUL GEOLOGIEI STITUTUL DE GEOLOGIE ȘI GEOFIZICĂ MINISTÈRE DE LA GEOLOGIE INSTITUT DE GÉOLOGIE ET DE GÉOPHYSIQUE

ANUARUL INSTITUTULUI De Geologie și geofizică

ANNUAIRE DE L'INSTITUT De GÉOLOGIE ET DE GÉOPHYSIQUE

TOME LIX

lucrările congresului al XII-lea al asociației geologice carpato - balcanice

travaux du xil·eme congrès de l'association geologique carpatho - balkanique

STRATIGRAFIE ȘI PALEONTOLOGIE STRATIGRAPHIE ET PALEONTOLOGIE

> BUCUREȘTI 1983

tare to the second s

Institu

IGR

CONTENU-CONTENTS-СОДЕРЖАНИЕ

PALEOZOÏQUE, PALEOZOIC

Iliescu V., Kräutner G. H., Kräutner F., Hann H. New Paly-	
nological Proofs on the Cambrian Age of the Tulghes Group (East Carpathians) .	7
Paraschiv D., Paraschiv C., Andrei C., Popescu M., Dăneț	
N. On the Pre-Neogene Formations in the North-Dobrogean Promontory	19
Paraschiv D., Dăneț N., Popescu M., Dumitrescu V. The	
Present Stage of Pre-Jurassic Deposits Knowledge in South Dobrogea	29

PALEOZOÏQUE-MESOZOÏQUE, PALEOZOIC-MESOZOIC

Balogh K. Review of the Palaeozoic-Mesozoic of North Hungary		39
Paraschiv D. Formations salifères de la Plate-forme Moesienne	(Roumanie) .	47
Pătruț I., Paraschiv C., Dăneț T., Balteş N., D	ăneț N.,	
Motaş L. The Geological Constitution of the Danube Delta .		55
Stănoiu I., Visarion A. Metamorphosed Paleozoic and Mes	ozoic Forma-	
tions of the Mehedinți-Retezat Unit		63

MÉSOZOIQUE, MESOZOIC

Antonescu E., Lupu D., Lupu M. Correlation palynologique du Crétace	
terminal du sud-est des Monts Metaliseri et des dépressions de Hațeg et de Rusce	
Montană	71
Baltes N., Antonescu E., Grigorescu D., Alexandrescu G.,	
Micu M. The Black Shales Formation of the East Carpathians, Litho-Bio-	
stratigraphy and Oil Potential	79
Durand-Delga M., Micu M. Reflexions sur les Calpionelles remaniées	
dans le Cretace superieur de l'unité des plis marginaux (Carpathes Orientales,	
Roumanie)	89
Lupu D., Lupu M. Biostratigraphische und fazielle Merkmale der "Gosau	
formation" im Apuseni Gebirge	95
Mitrovič-Petrovič J. Apercu sur la faune des echinides dans la region	
carpatho-balkanique en Jougoslavie	101
Patrulius D., Marinescu F., Baltres A. Dinosauriens Ornithopodes	
dans les bauxites Néocomiennes de l'unité de Bihor (Monts Apuseni).	109

4 CONTENU - CONTENTS - COLEP#AHUE	2
Pătruț I., Costea I., Vinogradov C., Comșa D., Osman L., Herescu A., Oprea O., Bönig H. The Pre-Albian Cretaceous Sedi-	440
Vinogradov C. Les formations rouges situées à la limite Jurassique-Crétacé	119
et de l'Aptien des unités d'avant-pays des Carpathes roumaines	127
MÉSOZOÏQUE-NÉOZOÏQUE, MESOZOIC-NEOZOIC	
Costea I., Ionescu P. Nannoplancton calcaire à la limite Crétacé-Tertiaire dans le flysch des Carpathes Orientales Roumaines	135
NÉOZOIQUE, NEOZOIC	
Alexeeva I. L., Andreescu I., Bandrabur T., Cepaliga A., Ghenea C., Mihăilă N., Trubihin V. Correlation of the Pliocene	
and Lower Pleistocene Deposits in the Dacic and Euxinic Basins	143
and Lower Pleistocene in the Dacic Basin	153
plio-pleistocenes dans le bassin dacique (Roumanie)	161
Sarmatian of Yugoslavia	169
Macrofloras in Romania	183
of the Carpathians and of the Caucasus	191
Kazmer M., Varga P. The Kiscellian Stage (Oligocene). Faciostratotypes at	
Noszvaj (Bükk Mountains, Hungary)	199
de l'Oligocene du bassin de la Haute Thrace (Bulgarie Meridionale) et leur importance stratigraphique	207
West of the Moesian Platform (Romania)	21 3
and Viviparids in the Upper Neogene of the Dacic Basin	221
(Romania)	229
Sütöne Szentai M. Biozonen von organischskelettingen Mikroplanktons in den pannonischen Schichten Ungarns	239
Vaškovska E., Vaškovska I. Newer Knowledge on the Structure and Stratigraphy of Quaternary Sediments at the Zitný Ostrov Island in the Danube	
Lowland (Czechoslovakia)	249

палеозой

Сергеева	А. Л.	Новые	данные (о Пермских	отложениях	Северо-За-	
падного	окончан	ния Мар	марошско	ого массива			261
Сергеева	А. Л.	, Hau	нев И.	К., Мал	яков И.	Г. Пали-	
номорфы	Девона и	в метам	орфитах	странджи .			265

МЕЗОЗОЙ

Дабаг	ян	Β.	Н.,	Куль	чн	цки	й О.	я.,	Лози	яня	к Ю.	п.	
Ст	рати	графи	и п	структу	рное	полог	кение	Сухов	ской зо	ны У	краинск	ких	
Ka	pnar		• •		• •	• •		• •		• •		• •	269
HE0301	ł												
Вялов	C.	0	Ma	аслун	В.	н.,	Совч	ІНК	в. я.	К	корреля	пии	

	Палеогенового	флиша Украинских и Румынских Карпат	277
Вял	ов С. О.,	Пономарева Д. Л. Зональная корреляция	
	Палеогеновых	отложений Украинских Карпат по мелким форамини-	
	ферам	••••••••••••••••••••••••••••••	287

and the second of the

1 2 . 2 . 2

14.14

NEW PALYNOLOGICAL PROOFS ON THE CAMBRIAN AGE OF THE TULGHES GROUP (EAST CARPATHIANS)¹

VIOLETA ILIESCU², HANS-GEORG KRÄUTNER², FLORENTINA KRÄUTNER², HORST HANN²

BY

With the increase of palynological and radiometric data the age of the Tulghes Group has been highly disputed for the last 15 years.

First a Riphean age was presumed by Iliescu and Codarcea -Dessila (1965) and Codarcea-Dessila (1967) on the basis of a poor association of sphaeromorphs, ultramicrospores and *Laminarites*, reported from the Bistrita Mts at Cirlibaba and Isipoaia. At the same time Timofeev (1966) mentioned Upper Precambrian sphaeromorphs from similar rocks of the Rahov Mts.

The Cambrian age, at least for a part of the Tulghes Group, was supposed first by Iliescu and Mureşan (1970) on the basis of Lophotriletes rugosus N a u m. identified at Bălan. Later I liescu and Mures an (1972) provided new proofs for this statement by reporting Cambrian sphaeromorphs as Granomarginata vulgaris N a u m ., Acanthosphaera cambriensis N a u m ., Psophosphaera obscura P i c h ., Microconcentrica atava N a u m. Considering also the available radiometric data and the known stratigraphic range of Leioligotriletum bistrovi Tim., the mentioned authors conclude on the Lower Cambrian age of the whole Tulghes Group. In 1973 the possible presence of Cambrian rocks is the sequence of the Delovetsk Series (the equivalent of the Tulghes Group in the Soviet literature), considered mainly as Vendian by Timofeev (1973 a), was also admitted by this author on the basis of Lophodiacrodium T im. in association with sphaeromorphs frequently reported from the Vendian of the Russian Platform. Concluding on the existent data, Iliescu and Kräutner (1975) presumed that the upper part of the Tulghes Group (formation Tg₃) represented the Cambrian, while the lower part (formations Tg₁ and Tg₂) could be a stratigraphic equivalent of the Vendian from the Russian Platform.

Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association,
 1981 September 8 - 13, Bucharest, Romania.

² Institute of Geology and Geophysics, str. Caransebes 1, 78344 Bucharest, Romania.

8

New data confirming the Cambrian age of the Tulgheş Group were reported from its equivalents in the Rahov Massif (Delovetsk Series) and in the Civcin Mts (Boerovsk Series) where S ergeeva (1974) identified Baltisphaeridium sp. and Baltisphaeridium cf. varium Volk. associated with Laminarites. Cambrian palynomorphs as Achantosphaera cambriensis Naum., Granomarginata vulgaris Naum. and Lophotriletes rugosus Naum. were mentioned later also in the higher parts of the Tulgheş Group (Tg₃ and Tg₄) from the Bistrița Mts near Broșteni (Fomov, in Vodă et al., 1976, unpublished data).

The palynological data were correlated with the available radiometric data by Bercia et al. (1976) who concluded on the Vendian-Cambrian age of the Tulghes Group.

Lithostratigraphy of the Tulghes Group

The lithostratigraphic research of the Tulghes Group started in 1962 by C o d a r c e a -D e s s i l a et al. (1964) at Brosteni-Crucea and was later extended over large areas by many geologists. A review was given by B e r c i a et al. (1976).

The new palynological data refer to the Broșteni-Zugreni zone of the Central Bistrița Mts (Fig. 1). In this area the following lithostratigraphic sequence has been recognized in the Tulgheş Group of the Putna Unit from the Bucovinian Nappe (K r ä u t n e r et al., 1981, unpublished data) (Fig. 2).

The formation Tg_1 (blastodetrital-quartzitic, 800 m) represents the lowest known part of the sequence. In the lower part it is cut by the overthrust plane of the Putna Nappe. It consists of quartzite-sericite-chlorite schists with a member of quartzites and quartz-feldspar rocks (Toancele Member) in its middle part.

The formation Tg_2 (graphitic with metalydites, 450 - 600 m) consists of an alternation of sericite-graphite schists, sericite schists and black quartzites (metalydites) with intercalations of limestones and a marker horizon of sericite quartz-feldspar rocks with chlorite and biotite (Pîrîul Ursului Horizon).

The formation Tg_3 (volcano-sedimentary rhyolitic, 1200 - 2400 m) corresponds to the products of five main phases of rhyolitic extrusions, separated by metasedimentary rocks. In this volcano-sedimentary pile four lithostratigraphic units have been mapped at the rank of members, called Isipoaia, Leşul Ursului, Moroşan and Fundul Moldovei. The volcanic sequences consist of quartz-feldspar schists mainly derived from rhyolitic tuffs and epiclastites. In the metasedimentary rocks associated with the volcanic sequences stratiform pyrite and base metal ore deposits of Kuroko type do appear (Fig. 2).

The formation Tg_4 (blastodetrital with phyllites, 1500 - 2500 m) derived from the detrital material deposited after the main volcanic phases. It is represented by an alternation of various terrigenous rocks in which scarce intercalations of rhyolitic metatuffs and metaepiclastites appear within two horizons only, named Praşca and Dealul Fagi. The following three members have been recognized : the B a s c a m e m b e r, a quartz-

Fig. 1

ite-phyllitic association with quartz-feldspar rocks at the top (Arşiţa Rea Horizon); the Pîrîul Crucii member, a specific association of sericite-chlorite schists with albite porphyroblasts, phyllites, sericitechlorite schists and greenschists; the Afinet member consisting of various types of quartzitic and quartz-feldspar rocks.

The formation Tg_5 (graphitic with greenschists and limestones, 600 m) is represented by an alternation of sericite—graphite schists with sericite schists, quartz-feldspar schists and intercalations of greenschists, limestones and metalydites.

Palynological Content

Samples from the whole sequence of the Tulgheş Series, excepting its lower part, the formation Tg, were collected from seven partial profiles between Zugreni and Holda (Putna Unit of the Bucovinian Nappe in the Bistrita Mts, Fig. 1) as follows: 1, Upper Colbu Valley; 2, Valea Başca 3, Culmea Afinet; 4, Valea Fierului; 5, Dîmbul Colacului-vîrful Runc; 6, Valea Dorneanu; 7, Bistrita Valley at Holda.

All the analysed rocks are in the greenschist faciest reaching locally the biotite isograde. Palynomorphs have been identified in approximately 20% of the collected samples. They are often deformed (compressional folds; kinks) or fragmentarily preserved and show different degrees of incipient carbonization (darkening). Some samples furnished palynomorphs in good state of conservation, without diagnosis difficulties. Such associations have been found especially in the metapsammitic rocks of the Pîrîul Ursului Horizon, in the phyllitic rocks of the formation Tg and in the calcschists and graphite schists of the formations Tg₂ and Tg₅.

The palynological content of these rocks consists mainly of sphaeromorphs without special biostratigraphic importance, associated with Cambrian acritarchs. Contaminations with Mesozoic spores were observed in some samples from the Bistrita Valley at Dîmbul Colacului (no. 985) as well as from the Colbu Valley and Başca Valley (no. 951, 968).

Formation Tg_1 . No samples were collected from this formation. Ruxandra Fomov (fide Vodă et al., 1976)³ reported from the respective sequence, near Broșteni, an association of sphaeromorphs with Protosphaeridium sp., P. tuberculiferum Tim., P. flexuosum, P. acis Tim., P. densum Tim., Trematosphaeridium sp., Stictosphaeridium sp., S sinapticuliferum Tim., Orygmatosphaeridium sp., Trachysphaeridium sp., Favososphaeridium sp., Leiosphaeridia undulata Tim., Symplassosphaeridium sp., Glaeocapsomorpha.

Fig. 2. - Lithostratigraphy of the Tulghes Group and Acritarch content.

sericite-chlorite schists; 2, quartzitic rocks; 3, feldspar quartzites (Arşiţa Rea type);
 quartz-feldspar rocks with chlorite and biotite (Piriul Ursului Horizon); 5, phyllites and sericite-graphite schists; 6, limestones; 7, chlorite-sericite schists with albite porphyroblasts;
 greenschists (basic metatuffs); 9, rhyolitic metavolcanics; 10, stratiform pyrite and base metal sulphides; 11, palynological assemblages.

V. ILIESCU et al.

6

Formation Tg_2 . In the lower part of the sequence, the following associations of acritarchs were identified in the graphite schists on the road near Holda (sample no. 981)⁴:

Baltisphaeridium sp.	Protosphaeridium sp.
B. dubium Volk.	$P.$ tuberculiferum \overline{T} im.
Cymatiosphaera cf. membranacea	Leiosphaeridia sp.
Kir.	Trachysphaeridium sp.
Trachyopsophosphaera exilis Lop.	Orygmatosphaeridium sp.
Podoliella îrregulare T i m.	Trematosphaeridium sp.
1 14	Stictosphaeridium sp.
	Pterospermopsimorpha sp.
and at Dîmbul Colacului (sample no.	988):
Trachysphaeridium atenuatum T i m.	Protosphaeridium sp.
· ·	Leiosphaeridia sp.
	Orygmatosphaeridium sp.
	Stictosphaeridium sp.

At the upper part of the sequence a palynological assemblage was found in the metapsammitic rocks of the Piriul Ursului Horizon. The samples (no. 984, 985, 891, 892) were collected from the road on the Bistrița Valley, north and south of Dîmbul Colacului.

Cymatiosphaera sp. Protosphaeridium sp. Baltisphaeridium sp. P. laccatum Tim. Synsphaeridium conglutinatum B. dubium Volk. B. ciliosum Volk. B. cerinum Volk. Tim. Leiosphaeridia sp. L. undulata Tim. B. cf. compressum Volk. Granomarginata squamacea Volk. Trachysphaeridium incrassatum Sin-Liu Spumosata sp. S. prima Na um. T. atenuatum Tim. Orygmatosphaeridium sp. Stictosphaeridium sp. Symplassosphaeridium sp. Trematosphaeridium sp. Kildinella sp.

Formation Tg_3 . No palynomorphs have been found in the samples collected from the rhyolitic volcano-sedimentary formation on the mentioned profiles. But I l i e s c u and M u r e ş a n (1972) reported from a probable lithostratigraphic equivalent of this formation, namely the Băilor Horizon at Bălan, an association (samples no. 4005, 4043) with Achantosphaera cambriensis N a u m ., Microconcentrica atava N a u m ., Leiodiscina sp., Granomarginata sp. Near Broșteni, V o d ă et al. (1976)³ mentioned a similar association in the formation Tg_3 : Achantosphaera cambriensis N a u m ., Granomarginata vulgaris N a u m ., Protosphaeridium densum T i m ., Favososphaeridium favosum T i m ., Synsphaeridium sp., Orygmatosphaeridium sp., Kildinella sp.

Formation Tg_4 . Palynomorphs from the lower part of this lithostratigraphic unit, equivalent to the Başca member, were reported

by V o d ă et al.³ in 1976 : Archaeopsophosphaera asperata N a u m., Lophotreiletes rugosus N a u m., Synsphaeridium conglutinatum T i m., Favososphaeridium sp., Leiosphaeridia sp., Protosphaeridium sp. It seems that the samples 2737, 2738, 2740, 2710, 4006 collected by I l i e s c u and M u r e ş a n (1972) from the Sîndominic complex and the upper part of the Sadocut complex of the Bălan region are also in equivalent lithostratigraphic position with the formation Tg_4 . The mentioned authors report from these samples Granomarginata vulgaris N a u m., Spumosata sp., Archaeosacculina sp., Asperatopsophosphaera sp., Psophosphaera sp. and Trematosphaeridium sp.

On our profiles associations with Cambrian acritarchs were found in the Başca member and within two horizons in the Pirîul Crucii member.

In the Başca member there were identified in phyllitic sericitegraphite schists of the Dorneanu Valley (sample 830)

Baltisphaeridium cf.

7

compressum Volk.

Granomarginata sp. Leiosphaeridia sp.

and in the same rocks on the Başca Valley (samples 947, 950) Veryhachium sp. Pterospermella vitalis Jank. Trachysphaeridium sp.

In the Pîrîul Crucii member similar acritarchs were identified in sericite-graphite schists of the upper Colbu Valley, below the horizon of the Dealul Fagi rhyolitic metatuffs (samples 967, 968): Veryhachium sp. Archaeofavosina sp.

Spumosata prima Naum.

Archaeofavosina sp. Asperatopsophosphaera sp. Pseudotasmanites sp. Protosphaeridium sp. P. flexuosum Tim. Synsphaeridium conglutinatum Tim. Trachysphaeridium sp.

as well as in quartz-sericite-graphite schists of Dealul Runc in higher lithostratigraphic position in respect to the Dealul Fagi rhyolitic metatuffs (sample 908):

Baltisphaeridium sp. Orygmatosphaeridium distributum T i m . Trachysphaeridium sp. Protosphaeridium sp. P. acis Tim. Leiosphaeridia sp.

Formation Tg_5 . In this highest known part of the Tulgheş Group, palynomorphs were found only in sericite-graphite schists and in calcschists associated with the limestones near Schitu Rarău (samples 836, 960):

Veryhachium sp. Cymatiosphaera sp. Granomarginata sp. Synsphaeridium sp. Leiosphaeridia sp.

LITHOSTRATIGRAPHIC		STRA	RATIGRAPHIC DISTRIBUTION					
	TAXONOMIC UNITS	PROTEROZOIC		CAMBRIAN				
	34	Rif	Vend.	1	2	3		
FORMATION Tg. 5	Veryhachium sp. Cymatiosphaera sp.			*				
FORMATION Tg.4	Veryhachium sp. Battisphaeridium sp. Bi cf. compressum Volk Pterospermelta vitalis Jank Spumosatic sp.* Granomarginato vulgaris Neum* Archaeopsophosphaera asperata Naum* Archaeopsophosphaera asperata Naum* Archaeofavosina sp.* Orygmatasphaeridium distributum Tim Archaeofavosina sp. Asperatopsophosphaera sp. Protosphaeridium flexuosum Tim Riacis Tim							
FORMATION Tg 3	Achantasphaero combriensis Noum* Microconcentrico alava Naum* Granomarginata vulgaris Noum**			<u></u>				
FORMATION Tg 2	Cymatiosphaera sp Cymatiosphaera of membranocea Kir Baltispheridium sp. B. of. compressum Volk. B. altiosum Volk. B. autosum Volk. B. autosum Volk. B. aronomarginata squamacea Volk. Spumosata sp. S. prima Naum Trachyopsphasphaera exilis Lop. Trachyopsphasphaera exilis Lop. Trachyopsphaeridium incrassatum Sin-Liu T. atenuatum Tim Padoliella irreguliare Tim Protosphaeridium laccotum Tim P. tuberculiferum Tim							
FORMATION Tg 1	Protosphaeridium tuberculiferum Tim ^{**} P flexuosum Tim ^{**} P. ocis Tim ^{**} P. densum Tim ^{**} Stictosphoeridium sincpticuliferum Tim ^{**}							

** Reported by Voda et al. (1976, unpublished)

Presumed oge

Fig.~3.-Lithostratigraphic and stratigraphic distribution of the Acritarchs in the Tulghes Group.

Conclusions on the Age

Considering the stratigraphic distribution of the palynomorphs identified in the Tulghes Group (Fig. 3) four types of assemblages may be recognized: 1, acritatchs of the types Baltisphaeridium, Cymatiosphaera and Veryhachium considered to appear first in the Cambrian (V o l k o v a et al., 1979); 2, acritarchs mentioned by N a u m o v a (1968) only in the Lower Cambrian, as for example Granomarginata vulgaris Naum., Achantosphaera cambriensis Naum., Microconcentrica atava Naum., Spumosata prima N a u m .; 3, sphaeromorphs as Archaeopsophosphaera asperata N a u m ., Archaeosacculina sp., Granomarginata cf. squamacea Volk., Trachyopsophosphaera exilis Lop., Trachysphaeridium incrassatum Sin-Liu, T. atenuatum Tim., mentioned by Volkova (1969), Sin Yu Sheng and Liu Kui-Zhih (1973), Timofeev (1973), Timofeev et al. (1976) in the Vendian and Lower Cambrian; 4, sphaeromorphs with decline in the Lower Cambrian, covering most of the Middle and Upper Proterozoic as for example Protosphaeridium flexuosum T i m., P. acis T i m., P. tuberculiferum T i m., P. laccatum Tim., Orygmatosphaeridium distributum Tim., Asperasp., Archaeofavosina sp., Podoliella irregulare (T itopsophosphaera m ofeev, 1973a, b).

If contaminations or resedimentation of the older palynomorphs are excluded, the coexistence of the mentioned acritarch assemblages (1 and 3, 4) may be considered as a proof of the Lower Paleozoic age (V o lk o v a, 1969; V o l k o v a et al., 1979). It seems therefore that the palynological data of Figure 3 indicate the Cambrian age of the Tulghes Group.

For the lower part of the Tulgheş Group (formation Tg_1) rests the possibility to include the Upper Vendian. As it was supposed by K r ä u t n er (1980) the formation Tg_1 may be considered a lithostratigraphic equivalent of the lower part of the Muncel Series (Apuseni Mts) in which V is a r i o n (unpublished data) mentioned *Cymatiosphaera*. Thus, it is highly probable that the formation Tg_1 represents also the Lower Cambrian.

For the upper part of the Tulghes Group (formations Tg_4 , Tg_5) with *Veryhachium*, at least a Middle Cambrian age may be supposed by the available data, but it is possible that the Upper Cambrian and even the Lower Ordovician may be included also, especially in the Formation Tg_5

We may conclude that the whole Tulghes Group may be assigned to the Cambrian, with possible and probable time span for Tg_1 in the Lower Cambrian, for Tg_2 , Tg_3 in the Lower-Middle Cambrian and for Tg_4 , Tg_5 in the Middle-Upper Cambrian, may be also lowest Ordovician.

Correlation with Radiometric Ages

The available radiometric data refer to the age of the volcanic activity of the formation Tg_3 and the associated metallogenesis, as well as to the age of the regional metamorphism of the Tulgheş Group.

U-P b zircon ages of 560 - 640 m.y. were reported by B o i k o et al. (1975) for the rhyolitic metavolcanics of the Delovetsk Series (equivalent of the Tulgheş Group in the Rahov Mts). The upper part of the men-

15

tioned time span is in concordance with the Lower Cambrian age indicated by acritarchs (Fig. 3) for the rhyolitic volcano-sedimentary formation Tg_{s} .

P b - P b a g e s of 540 - 600 m.y. were obtained by V î j d e a, A n a s t a s e (1975 and unpublished data) and P o p e s c u (unpublished data) on syngenetic stratiform ores associated with the rhyolitic volcanism of the formation Tg₃. These data are in concordance with the mentioned zircon ages and support the Lower Cambrian age of the volcanosedimentary formation Tg₃.

K / Ar whole rock and sericite ages were reported from rocks of the Tulgheş Group by Semenenco et al. (1969), Pop et al. (1974), Mînzatu et al. (1975), Boiko et al. (1970) and Kräutner et al. (1976). The ages were frequently regenerated by Ar loss during Variscan or Alpine events. Maximal values of K/Ar modal ages are of 472 m.y. (λ k 10⁻¹⁰ ans⁻¹= 0.584) and the K/Ar isochrone ages suggest 505 ± 5 m.y. Therefore the regional metamorphism of the Tulgheş Group may be accepted around the Cambrian-Ordovician boundary or in the Lower Ordovician. This proves that the rocks of the Tulgheş Group with acritarchs such as Veryhachium, Baltisphaeridium and Cymatiosphaera cannot be younger than the lower Ordovician.

³ A. Vodă, D. Vodă, I. Popescu, C. Velio. Unpublished data.

⁴ Diagnosis palynomorphs and sphaeromorphs without special stratigraphic importance are listed in different columns.

REFERENCES

Bercia I., Kräutner H. G., Mureşan M. (1976) Pre-Mesozoic Metamorphites of the East Carpathians. An. Inst. geol. geofiz., L, p. 37 - 70, Bucureşti.

- Boiko K. A., Kruglov S. S., Kulcitkii O. E., Matkovskii I. O., Merlici V. B., Spitkovskaia M. S., Fişkin In. M., Toni V. O., Cedjemov H. G. (1970) Absoliutnace geohronologia glavneişih complecsov Ucrainskih Carpat. Trudi XV sesii comisii po opredelenii alsoliutnogo vozrasta gheologhicskih formații. Izdatelstvo "Nauka".
 - Bartnitski E. N., Eliseeva G. D., Kazanteva A. I., Levkovskaia N. I., Ovsienko V. D., Terets G. E. (1975) Resultati pervovo isledovania po zirkovovoi hronologhii cristaliceskovo iadra vostocinih Karpat. Geologhiceskii jurnal, XXXV, 2, p. 112 - 116, Kiev.
- Codarcea Dessila M. (1967) Noi date asupra stratigrafiei terenurilor cristalofiliene din România. Slud. cerc. geol. geofiz., geogr., ser. geol., 12, 1, p. 57 - 68, București.
 - Bercia I., Kräutner H. G., Mureşan M. (1964) Cercetări structurale și stratigrafice în cristalinul Bistriței (regiunea Bărnărel-Holdița). D. S. Inst. geol., L/2 (1962-1963), p. 3 - 23, București.
- Iliescu V., Codarcea-Dessila M. (1965) Contribuții la cunoașterea conținutului microfloristic al complexelor de șisturi cristaline din Carpații Orientali. D. S. Com. Stat Geol., LI, 2, p. 13 - 18, București.

Institutul Geologic al României

- , Mureşan M. (1970) Contribuții de ordin palinologic la cunoașterea stratigrafiei și vîrstei seriilor metamorfice din partea sudică a compartimentului Tisa-Ciuc (zona cristalino-mezozoică a Carpaților Orientali). D.S. Inst. geol., LVI/3, Paleontologie (1968-1969), p. 97 - 110, București.
- , Mureşan M. (1972) Asupra prezenței Cambrianului inferior în Carpații Orientali –
 seria epimetamorfică de Tulgheş. D. S. Inst. geol., LVIII/4 (1971), p. 23 38, Bacurești.
- , Kräutner H. G. (1975) Contribuții la cunoașterea conținutului microfloristic și a virstei formațiunilor metamorfice din Munții Rodnei și Munții Bistriței. D. S. Inst. geol. geofiz., LNI/4, p. 11 - 25, București.
- Kräutner H. G. (1980) Lithostratigraphic Correlation of Precambrian in the Romanian Carpathians. An. Inst. geol. geofiz., LVII, p. 229 – 296. București.
 - Krāutner F., Tănăsescu A., Neacşu V. (1976) Interprétation des âges radiométriques K/Ar pour les roches métamorphiques régénerées. Un exemple – les Carpathes Orientales. An. Insl. gcol. geofiz., L, p. 167 – 229, Bucureşti,
- Minzatu S., Lemne M., Vijdea E., Tănăsescu S., Ioncică M., Tiepac I. (1975) Date geocronologice obținute pentru formaliuni cristalofiliene și masive eruplive din România. D. S. Inst. geol. geofiz., LXI, 5, p. 85 - 111, București.
- Naumova S. N. (1968) Stratigrafia nijnevo Paleozoia tzentralnoi Evropi. Mejd. geol. kongress XXI, Sesia probl. 9, Acad. Nauk SSSR Moskva.
- Pop G., Ailenei G., Cristea I., Soroiu M., Popescu G. (1974) Evolution of the Metamorphic Belt in Romanian East Carpathians as Revealed by the K-Ar Dating. Rev. Roum. Geol. Geophys. et Géogr., Géophysique, 18, p. 141 – 148, Bucarest.
- Semenenco N. P., Tkaciuk L. G., Zaidis B. B., Demidenko S. G., Kotlovskaia F. I. (1969) Itoghi issledovanii, vipolnonth Sovetskom Soiuze po absoliutnoi geohronologii gheologhiceskih formații Ucrainskih Carpat i sopredelnih territorii. Acta Geol. Hung., XIII, 1 - 4, p. 359 - 382, Budapest.
- Sergeeva L. A. (1974) Vozmojnost rastschlenenia metamorfisanich porod paleozoia iadra vostotschnih Karpat po palynologiceskim danim. Proc. X Congr. CBGA 1973, Secl. I (Stratigr. Paleont.) p. 199 - 204, Bratislava.
- Sin Yu-Sheng, Liu Kui-Zhih (1973) On Sinean Microflora in Yenliao Region. of China and Its Geological Significance. Acta Gologica Sinica, 1, p. 52 - 64.
- Timofeev B. V. (1966) Microphytologiceskie isledovanie drevnich swit. *Izd. Nauka*, Moskva.
 - (1973a) Microfitofosilii dokembria Ukraini. Izdatelstvo "Nauka", Leningrad,
 - (1973 b) Microfitofossili Proterozoia i ranevo Paleozoia. În Microfossili drevneislich otlojenii, p. 7 - 14, Isdatelstvo "Nauk", Moskva.
 - , Gherman T. N., Mihailova N. S. (1976) Mikrofitofossilii Dokembria, Kembria i Ordovica. Acad. Nauk SSSR, Leningrad.
- Vijdea E., Anastase S. (1975) Apredelenia vozrasta metodom obicinobenobo svitza b nekatorich mestorojdeniach sviazanich s kristalliceskemi massivami bostoenih Karpat. Proceed. X Congr. CBGA, IV (Mineral., Geochem., Metallog.), p. 253 - 360, Bratislava.
- Volkova N. A. (1969) Acritarhi severo-zapada russkoi platform. Tommotski iarus i problema niznei granitzi Kembria (Trudi, 206), p. 224 – 235, Acad. Nauk SSSR, Moskva.
 - , Kirjanov V. V., Jankausas T. V. (1979) Rastitelnie microfossili. În Paleontologia verhnedokembriinskih i kembriinskih otlojenii Bostotschno-Evropeiskoi Platformi, p. 4 - 38. Isdatelstvo "Nauka", Moskva.

2 - c. 50 21

X

ON THE PRE-NEOGENE FORMATIONS IN THE NORTH-DOBROGEAN PROMONTORY ¹

B7.

DUMITRU PARASCHIV², CORNELIA PARASCHIV², CORNELIA ANDREI², MIRCEA POPESCU², NURHAN DĂNET²

The North-Dobrogean Promontory — an extension of North Dobrogea W-NW of the Danube under the Neogene cover — has been lately the object of intensive and systematic geological and geophysical investigations. Over 300 wells have been drilled up to now between the Danube, the Prut and the Siret rivers and the Bîrlad parallel, out of which more than half have also reached pre-Neogene deposits.

As already known, the geological formations making up the area corresponding to the North-Dobrogean Promontory may be assigned to two structural stages: a lower one, with folded, more or less metamorphosed, deposits of Precambrian (?), Paleozoic and Triassic age; and an upper one, present in a quasihorizontal Neogene structure. The lower stage corresponds to the North-Dobrogean Orogene, consolidated during the uppermost Triassic, while the upper stage terms make up the epicratonic flank of the Carpathian Foredeep.

Despite the high degree of rock transformation and almost complete lack of determinable fossil remains, the stratigraphic sequences crossed by wells under the Neogene cover are similar, sometimes even identical to those which outcrop in Dobrogea. This has allowed registering a similar succession in the buried promontory, shown by the geological mappings S-SE of the Danube. The latter includes the Orliga-Megina Catamesometamorphites, the Boclugea Formation, the Tepu Formation, the Măxineni Formation, the Carapelit Formation, as well as postcarapelitic sedimentary sequences and numberless magmatic bodies.

1. The Orliga-Megina Catamesometamorphites described in the relevant literature (Giușcă, 1934; Ianovici et al., 1961; Mirăuță, Mirăuță, 1962; Mirăuță 1966, etc.) make up a whole

Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association,
 1981 September 8 - 13, Bucharest, Romania.

² Ministry of Petroleum, Bucharest, Romania.

2

Fig. 1

complex of crystalline schists consisting of amphibolites, amphibolic schists, shaley white quartzites and micaschists with muscovite and biotite in the Macin Mts. Similar rocks have been crossed within the North-Dobrogean Promontory, mainly in the area of well concentration and greater depth of pre-Neogene investigations. Catametamorphic rocks are represented by gneisses, amphibolites and amphibolic schists, quartzites, micaschists with biotite and muscovite, partially slightly cornified.

Within the North-Dobrogean Promontory, the Orliga-Megina Catamesometamorphites make up two buried ridges, oriented SE-NW (Fig. 1). One is the axial promontory zone which seems to extend continuously between Cotu Lung and Grivița; the other, revealed by the wells drilled between Vădeni and Cuca, follows the line of the Măcin-Ciucurova Fault, still lying west of the accident in question.

According to the researches carried out by M i r ă u ț ă (1966) in the southern part of the Măcin Mts, the age of the catamesometamorphic complex must be Precambrian, possibly including part of the Cambrian as well. A very recent paper (S e g h e d i , 1980) also foresees a Precambrian age for these rocks.

2. The Boclugea Formation includes a sedimentogene, more or less epimetamorphosed, association, where phyllites and quartzites are prevailing. In North Dobrogea, where it outcrops, the sedimentogene association has been defined (over a thickness of about 1500 m) as "the Phyllito-Quartzitic Series" or "the Boclugea Series" (I a n o v i c i et al., 1961; M i r ă u ț ă, M i r ă u ț ă, 1962). Phyllites are dominant in the lower part of the profile and appear as metric intercalations. Generally weak, their metamorphism amplifies with sericitous and chloritous phyllites. White, grey or red quartzites are either massive (banks of 2-4 m) or bedded and prevail in the upper part. "The Phyllito-Quartzitic Series" has been estimated as belonging to the Cambro-Ordovician, conformably overlying the Orliga-Megina Catamesometamorphites.

Within the North-Dobrogean Promontory, an equivalent of the "Phyllito-Quartzitic Series" is considered to be the "Boclugea Formation", a complex of epimetamorphic rocks or, locally, a sequence of orthoquartzites, grauwacke, subgrauwacke and argillites, almost unaffected by metamorphism and known as "the Buciumeni Orthoquartzites". In the authors' opinion, the Buciumeni Orthoquartzites, comprising a Cambro-Ordovician palyno-protistologic assemblage, could be the stratigraphic equivalent of the Boclugea Formation. The discrepancy between the two lithostratigraphic units lies in the rock transformation degree, a variation equally registered in North Dobrogea. Lying in the north-

21

^{Fig. 1. - Map of the pre-Neogene formations location within the North-Dobrogean Promontory: 1, well reaching pre-Neogene deposits; 2, fault; 3, overthrust line; 4, the Orliga-Megina Catamesometamorphites; 5, the Boclugea Formation: a, Buciumeni Quartzites; b, epimetamorphites; 6, the Tepu Formation; 7, the Măxineni Formation; 8, the Carapelit Formation; 9, post-carapelitic deposits; 10, magmatites; 11, greenschists; 12, section direction.}

western end of the promontory (Fig. 1), at a certain distance from the Paleozoic magmatic hearth, the Tepu-Buciumeni area has been estimated as less affected, dynamically and thermally, during its evolution.

The epimetamorphites (the Boclugea Formation) consist of : chloritic and chlorito-sericitic phyllites; chloritic, sericitic and chlorito-sericitic schists; chlorite-quartzitic schists; quartzitic schists with epidote; at Frumuşita, these rocks are strongly mineralized with hematite.

The Buciumeni Orthoquartzites have been crossed near the locality bearing the same name; still, they have been opened by drillings but for a section of 433 m at the utmost.

In the Buciumeni Orthoquartzite sequence, the well 117 Tepu has encountered fossil remains at the depths 2372. 5 - 2374.5 m, 2379 -- 2382 m and 2382 - 2385.5 m, consisting of Microhystridium shintonensis D o w., M. stellatum D e f1., Archaeohystrichosphaeridium sp., A. arenigum T i m., Acanthodiacrodium sp., Cymatiogalea sp., Baltisphaeridium hirsutoides (E i s.), B. brevifurcatum (E i s.), B. trifurcatum paucifurcatum E i s., Gonyosphaeridium polygonale (E i s.) E i s., Veryhachium europaeum S t o c k., W i 11., V. aculeatum D e u n f f., Lophominuscula sp., Leiominuscula sp., Protosphaeridium asaphum T i m., P. densum T i m., Leiosphaeridia fragile D o w., Leiofusa sp., undeterminable Acritarchs, undeterminable Leiosphaere, algal remains.

The identified palyno-protistological assemblage seems to indicate uppermost Cambrian-lowermost Ordovician.

3. The Tepu Formation is composed of a succession of argillites, limestones and sandstones, abundant in organic matter and pyrite. More or less affected by diagenetic processes, these deposits are fragmentarily distributed (Fig. 1). The lithostratigraphic term in question looks like better developed in the north-western promontory end, in the Tepu-Buciumeni area, where it appears as the conformable extension of the Cambro-Ordovician sequence. These deposits have neither been completely crossed; the maximal section, of 124 m, has been opened by the well 118 Tepu.

Over the investigated thickness, the Tepu Formation comprises the following petrographic types: slightly microgritty, pyrito—carbonaceous argillites, locally looking shaley or strongly breccified; gritty grey limestones with vegetal remains, lithic limy—detrital sandstones, slightly pigmented by organic matter and pyrite; sandstones with siliceous-chloritosericitic binder, sometimes affected by metamorphic processes.

The deposits belonging to the Tepu Formation lack determinable fossil remains. Taking into account that the described sequence has accumulated within an euxinic, reducing environment, that it has been crossed both on the flank and in the Tepu uplift pericline (the axis of the latter equally including the Boclugea Formation) and that carbonate episodes also occur in the deposit succession, the Tepu Formation is finally estimated as part of the Silurian.

Similar deposits have been encountered in the southern Mäcin Mts (Mirăuță, Mirăuță, 1962), where the "Grey Phyllite and Limestone Series" follows over a thickness of about 1000 m. The latter

comprises crinoid and coral remains (ex. *Cyathophyllum*) and supports the fossiliferous Devonian, which decides for its assignment to the Silurian.

4. The Măxineni Formation appears in patches on the western promontory flank (Fig. 1), at Măxineni, Muchia, Brăila, Piscu and Pechea. Being crossed only over 166 m (at Măxineni), the deposits in question consist of crystalline limestones and dolomitic crystalline grey limestones, impurified by clayey matter and pyrite; they also include grey pseudoskarns with vesuvian (Măxineni).

Considering certain similarities with the profile opened in the Macin Mts (Simionescu, 1924; Paeckelman, 1935; Mirăuță, Mirăuță, 1962), it is temporarily considered that the carbonate deposits affected by contact-metamorphic processes belong to the Devonian.

5. The Carapelit Formation, defined in North Dobrogea (M r a z e c, P a s c u, 1896), consists of two horizons: a lower one — predominantly conglomeratic — and an upper one, made of grauwacke and phyllites (I a n o v i c i et al., 1961). The outcropping "Carapelit Beds" reach thicknesses of about 1500 m. Their age has been estimated as Dinantian.

Within the North-Dobrogean Promontory, Muresan et al. (1971) identified and described, first north of Frumuşita, the Carapelit Formation. Subsequently, while extending the research, the Carapelit Formation has been crossed by other 40-50 wells, most of them concentrated in the Matca area (Fig. 1). These deposits may also be present in the western promontory flank, between Nicorești and Fundeni. According to the present knowledge, it seems that the Carapelit Formation, preserved in some big synclines, is part of the North-Dobrogean Promontory flank and pericline.

None of the wells drilled up to now has entirely opened the lithostratigraphic term in question. The thickest sections have been crossed by the wells 147 Matca (550 m) and 4200 Nicorești (685 m).

The rocks in this formation show certain anchymetamorphic aspects, expressed by the effects of micaceous mineral orientation, as well as quartz and feldspar grain crush and extension. The clayey and tuffaceous material included in the binder and in the rock components globally change into sericite and partially into chlorite and silicas.

As in North Dobrogea, the Carapelit Formation is represented within the lowermost North-Dobrogean Promontory by predominantly conglomeratic deposits, overlain by a gritty-clayey sequence.

The Carapelit Formation deposits lack in determinable fossil remains. Only in the reworked limestone fragments, there have been identified numberless foraminifera and conodont species. Among conodonts, the following species are to be noticed: Belodella devonica (Staufer), Ligonodina aff. salopia (R hodes), Ozarkodina media Walliser, O. typica denckmanni Ziegler, Pelekysgnatus furnishi Klapper, Polygnatus foveolatus Philip., Yakson, P. linguiformis linguiformis H inde, Spathognathodus remscheidensis Ziegler, S. optimus Moskalenko, S. steinhornensis optimus Moskalenko (Lower

5

6.

Devonian); Polygnatus docorosus Stauffer, P. pseudofoliatus Wittekindt (Middle Devonian); Angulodus waleathi (Hibbard), Palmatodella delicatula Ulrich, Basslev, Palmatolepsis delicatula delicatula Branson, Mehl., P. gigas Miller, Youngquist, P. triangularis Sannemann, Polygnathus communis Branson, Mehl, P. normalis Miller, Younquist, Spathognathodus bidentatus Bischoff, Ziegler (Upper Devonian).

Besides the elements already discussed for North Dobrogea outcrops, namely: relationships to main magmatic phases, the facies, correlable to that of Culm, the presence of an *Asterocalamites* fragment and some coral remains in the limestone lenses, the present paper adds another two:

- the Carapelit "Beds" rework magmatic and sedimentary rocks up to the Famennian (included);

- the formation under discussion includes a carbonaceous facies with siderite, the latter being probably of Carboniferous, maybe post-Tournaissian age.

6. Post-carapelitic sedimentary deposits. The sedimentary realm of the North-Dobrogean Promontory includes other deposits besides the above-described sequences, whose age cannot be precised for the moment. This is the case of the conglomerates and of the grey-greenish sandstones in the Drăgănești area, of the sandstones, clay and more seldom of the garnet-red conglomerates in the Barcea-Fundeni and Vădeni-Zagna areas, as well as of the conglomerates and brown — garnet-red sandstones in the Matca area. These rocks have been provisorily assigned to the Werfenian (through analogy with the Bogza and Mihai Bravu sequences), but part of them might equally be Permian or Carboniferous, as they sometimes display slight metamorphic changes or antecarapelitic igneous rock reworkings (aspects also present in the Carapelit Formation). Moreover, the respective conglomerates rework post-carapelitic elements specific to North Dobrogea, such as: the granites and the basic sequences of the Greci type, the quartzo-feldspathic porphyries of the Camena type and the red, hematitic porphyries of the Consul Hill eruption type located in the Upper Carnian-Lower Norian.

7. Magmatic rocks. The presence of intrusive and effusive magmatic rocks in the investigated area has been testified by numerous wells. Other magmatic bodies— the strongest as it seems — have not been crossed by wells, but are suggested by the existence of the contact metamorphic rocks and by magnetometric surveys.

The igneous rocks show variations from acid to basic, being predominantly represented by intrusive and very seldom by effusive terms (Fig. 1). Granites, granodiorites, pyroxenites, metagabbros and vein rocks (porphyries and lamprophyres) are the most widespread.

It is difficult to precise the moment of the magmatic event. This should be estimated within the geological framework of North Dobrogea (Mirăuță, Mirăuță, 1962; Mirăuță, 1966; Mureșan et al., 1971).

Institutul Geologic al României

7

8. Tectonical considerations. The sedimentogene-volcanogene complex in the North-Dobrogean Promontory is part of the folded, more or less metamorphosed, formations category ($6^{\circ} - 85^{\circ}$ dip). The metamorphism degree generally varies with rock age.

The drilling data and the similarity between the formations in the regional pre-Tertiary basement and those identified in North Dobrogea have led to the conclusion that the tectonic style of this buried basement resembles that in the outcrop area south-east of the Danube : structural-facial zones, tectonic overthrusted compartments, folds, wedges, lots of disjunctive accidents, eastward vergence (Fig. 2).

The North-Dobrogean Promontory, a buried paleohorst, is delimited N-E and S-W by the main tectonic dislocations Sf. Gheorghe – Cahul-Adjud and Peceneaga-Gamena, respectively. The former is subsequent to the main regional dislocations, as it tectonically contacts, in a successive manner, the Pre-Dobrogean Depression to the Tulcea Unit (eastwards) and then, to the Măcin Unit (westwards). In the vicinity of Adjud, the line in question might encounter the Peceneaga-Gamena Fault, thus forming the north-western boundary of the North-Dobrogean area.

Besides the most debated Peceneaga-Camena Fault, mention must be made of other longitudinal dislocations, such as the Măcin-Ciucurova and Pechea faults (Figs. 1,2), equally oriented eastwards. All along the Măcin-N Ciucurova Fault, there is a tectonic contact between the Carapelit Formation and the laminated granites (Frumusita) or the epimetamorphic deposits in the Boclugea Formation. Other longitudinal or transversal accidents result from the distribution of the various lithostratigraphic terms, of the metamorphite and from the geophysical (seismic) data collected at the Neogene/Basement contact.

REFERENCES

Gherman E. (1961) Report I.P.G.G.H. archives, Bucharest.

- Giușcă D. (1934) Massil de Pricopan. An. Insl. Geol. Rom., XVI, pag. 481 498, Bucharest.
- Ianovici V., Giuşcă D., Mutihac V., Mirāuţā O., Chiriac M. (1961) Aperçu gênêral sur la géologie de la Dobrogea. Assoc. Géol. Carp-Balk., V-ême Congr., D. Dobrogea, 92 pag., Bucharest.
- Mirăuță O. (1966) Contribuții la cunoașterea formațiunilor paleozoice din partea sudică a Munților Măcinului. Stud. cerc. geol. geof., geogr., seria geol., XI/2, pag. 497 - 512, Bucharest.
 - Mirăuță E. (1962) Paleozoicul din partea de sud a Munților Mācin (regiunea Cerna-Hamciarca). D. S. Inst. geol., NLIV, pag. 129 - 142, Bucharest.
- Mrazec L., Pascu R. (1896) Note sur la structure géologique des environs d'Ortachioi. Bull. Soc. Sci. phys., pag. 82 - 96, Bucharest.
- Mureşan M., Crudu E., Jacotă G. (1971) Report, the archives of the Geological Enterprise of Prospection for Solid Mineral Substances, Bucharest.

26

- Paeckelmann W. (1935) Probleme des Varisticums der Dobrudscha. Z. Deul. Geol. Ges., 87/1, pag. 507 - 522, Berlin.
- Preda D. (1964) Vorlandul orogenului carpatic și poziția lui tectonică în cadrul geologic structural al Europei. An. Com. Geol., NNXIII, pag. 9 - 44, Bucharest.
- Sandulescu M. (1974) The Rumanian Foreland. Tectonics of the Carpathian-Balkan regions, 446 449, Bratislava.
- Seghedi A. (1980) Metamorphic Formations of North Dobrogea. An. Inst. geol., geofiz., LVII, pag. 469 - 477. Bucharest.
- Simionescu I. (1924) Fauna devoniană din Dobrogea. An. Acad. Rom. Mem. sect. \mathfrak{st} . HI/2, pag. $1 \rightarrow 16$. Bucharest.
- Şlezinger A. (1958) Poziția structurală a Dobrogei și a Depresiunii predobrogene. Tra ducere din Biulletin Moskovskovo obșcestva ispitotelei prirodi, oldel gheologhiceskii, 2, pag. 36 - 52, Moskva.

THE PRESENT STAGE OF PRE-JURASSIC DEPOSITS KNOWLEDGE IN SOUTH DOBROGEA ¹

ΒY

DUMITRU PARASCHIV², NURHAN DĂNEȚ², MIRCEA POPESCU², VIORICA DUMITRESCU²

South of the Capidava-Ovidiu Fault -a tectonic accident which delimits South Dobrogea from Central Dobrogea – there are Jurassic, Cretaceous, Paleogene and Neogene outcropping deposits. Their study has started even since the previous century. The knowledge of formations older than the Jurassic is, however, much more recent, owing to wells drilled during the last three decades. With the continuous progress of research, there have been identified, in a first stage, Silurian deposits at Costinești-Tuzla (Grigoraș, 1956), then the Mangalia Devonian (Răileanu et al., 1965, 1966, 1967) as well as possible Ordovician within the same area have been referred to. Further on, there have been signalled the Comana (Nästäseanu, Paraschiv, 1973) and the Negru Vodă Carboniferous (Paraschiv et al., 1973), while lately (Paraschiv, Dănet, 1981) the presence of the Triassic at Independenta and possibly at Castelu has been paleontologically substantiated. Out of isolated papers, published during the last quarter of a century. the conclusion is reached that the South Dobrogea pre-Jurassic is represented by the Ordovician (?), Silurian, Devonian, Carboniferous and Triassic. A general view on the succession and distribution of these deposits is not available yet; that is the reason why the present paper attempts such a synthesis.

The South Dobrogea is a part of the Moesian Platform, a unit located between the Carpathian and the Balkanian realms. Therefore, the pre-Jurassic south of the Capidava-Ovidiu Fault should be located within the geological framework of the platform in question. This holds true all the more that most lithostratigraphic terms with their stratotype north of the Danube also extend throughout Dobrogea, south of the great river.

The pre-Jurassic deposit basement in South Dobrogea seems to consist of the catamesometamorphites making up the gneissic (archaic)

¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981 September 8 - 13, Bucharest, Romania.

² Ministry of Petroleum, Bucharest, Romania.

2

series and the Palazu Mare Series (500 - 1100 m thick), the latter considered as Lower Proterozoic, as well as of the anchymetamorphosed formations of the Greenschists Series, of an Infracambrian-Lower Cambrian age. In the above-mentioned constitution, the basement has been crossed only at Palazu Mare. This basement is uncertainly accepted to extend throughout Dobrogea.

The various published and unpublished studies on the Moesian Platform make room for the conclusion that the pre-Jurassic in South Dobrogea develops unevenly, its thickness varying between a few hundreds and 3500 m. Within this lithologically heterogeneous sequence, several lithostratigraphic units of a formation rank may be separated. These terms are briefly discussed further on.

1. The Mangalia Orthoquartzites are the first term of the cover and consist of quartzwacke, quartzitic sandstones, gray or black orthoquartzites and sericitic argillite intercalations. Out of the above-mentioned petrographic varieties, quartzites are prevailing.

The wells which encountered this formation, Mangalia 5083, Ciobănita 5054 and Cobadin 5067, have not entirely crossed the discussed arenitic sequence. The longest (523 m) profile opened has been signalled at Mangalia.

According to data recorded north of the Danube (Țăndărei), the orthoquartzitic formation seems to unconformably overlie the Greenschists Series and diachronically supports various terms of the upper lithostratigraphic unit — the Țăndărei Argillites.

The Mangalia Orthoquartzites have been crossed by wells on the eastern, raised margins (Fig. 1) of some major blocks, but their presence might be continuous in South Dobrogea.

The core samples from the Cobadin 5067 well, together with other samples which belong to the borehole Tăndărei 1052, contain a Tremadocian-Arenigian palyno-protistological association, out of which mention should be made of the species Archaeohystricosphaeridium arenigum T i m., A. minor T i m., Cymatiosphera boulardi D e u n ff., Cymatiogalea polygonomorpha G o r k a, C. bellicosa D e u n ff., Leiofusa sp. etc. Taking into account the much thicker Mangalia Quartzites and the incomplete penetration of the series, the Mangalia Orthoquartzites are likely to include, besides the Ordovician, part of the Cambrian, too.

2. The Tăndărei Argillites comprise a sequence of predominantly pelitic, 11-495 m thick deposits, overlying the Mangalia Quartzites (in other parts of the Moesian Platform argillites directly overlie the meta-morphic basement) and conformably, but diachronically support the Smirna Quartz-Sandstones Formation.

In South Dobrogea, the Tăndărei Argillites have been signalled by the boreholes Costinești 53, 62, 64, 67, Tuzla 5055, Biruința 5082 and Mangalia 5083. According to them and to other boreholes carried out in the region, the argillitic formation occurs in the sunken sectors, better sheltered against denudation. On the raised margins of the main tectonic blocks, the respective formation lacks because of erosion (Fig. 1).

The lithostratigraphic term under discussion is mostly composed of argillites (sericito-chloritic, sericitic, siltic, gritty, sideritic, occasionally bituminous, calcareous and slightly dolomitic, tuffaceous argillites), clays, graywacke and sparite intercalations.

The paleontological content of the Țăndărei Argillites, consisting of macrofauna (graptolites, orthocone nautiloids, bivalve, gastropoda) and microfauna indicates a Ludlowian-Eodevonian, even Lower Eifelian age for the deposits in question. North of the Danube (Țăndărei, Bordei Verde), the argillitic facies gets down to Lower Ordovician. The graptolites regis-

Fig. 1. — Pre-Jurassic formations distribution map in South Dobrogea and in the south-eastern part of the Romanian Plain. 1, crystalline basement; 2, anchymetamorphic basement (the Greenschists Series); 3, Mangalia Quartzites; 4, Țăndărei Argillites; 5, Smirna Quartz-Sandstones; 6, the Călărași Formation; 7, the Vlașin Formation; 8, the Ciurești volcanogene-sedimentary Complex; 9, the Segarcea Formation; 10, well crossing pre-Jurassic formations; 11, main fault; 12, Romanian-Bulgarian boundary.

D. PARASCHIV et al.

4

tered at Mangalia and Tuzla belong to the Neodiversograptus nilssoni and Lombograptus scanicus zones (I or d a n, 1977) pointing to the Lower Ludlowian. The logs of the Mangalia 5083 well let us suppose the Upper Ludlowian, and even the Pridolian, terms found north of the Danube, but paleontologically unidentified in Dobrogea because of poor investigations. In exchange, the Eodevonian is proved by a rich macrofauna, determined (Răileanu et al., 1966; Iordan, 1977) in the Mangalia 5082 well. Out of the mentioned species, Tentaculites gyracanthus (E aton), T. ornatus Sow., T. acuaria Rich., Chonetes omaliana (De Konink), Schuchertella euzona (Fuchs), Delthyris dumontianus Konink), D. infans Dahmer - characterize the Gedinian; (De)Tentaculites straeleni Maill., Prolationus praelongus Ljas, Leptostrophia cf. index H a v l., Fimbrispirifer trigeri (V e r n .), Volinites velaini (Num.-Chalm.), Dignomia hunsurchiana Fuchs, Limoptera orbicularis (O e h l.) - point to the Siegenian, while the trilobites Pilletina asiatica (Vern.), P. hammerschmidti (Roemer), P. pectinata (Roemer), Pseudocryphaeus prostellans (Richter) and the bivalves Cardyum inflatum Dienst, Goniophora nassoviensis Kayser – testify to the Emsian.

The Lower Devonian presence is supported by an abundent microfauna, identified in the Mangalia 5082 well. The Pontocypris delicata Wilson, Icriodus Woschmidti Ziegler and Dizygopleura trisinuata Van Peet biozones point to the Eodevonian and the transition to the Eifelian. This means that the Țăndărei Argillites also extend in the lowermost Eifelian, a fact actually proved by the macrofaunal forms : Schellwienella umbraculum Schl., Chonetes coronatus Conrad, Spirifer (Mucrospirifer) thedfordensis Schl., Orthonata triplicata Fuchs, etc. (Răileanu et al., 1965).

3. The Smirna Quartz-Sandstones are characterized by a predominantly arenitic sequence, overlying the Țăndărei Argillites, and probably conformably supporting the Călărași Formation.

Actually crossed by the Mangalia 5082 and 5083 wells, this formation might be present in other borehole profiles, too. The quartz-sandstones thickness varies between 120 m (the well 5082) and 648 m (the well 5083). The considerable difference in thickness between the two wells, over only 4 km distance, might have been caused by lithofacial variations, i.e. by arenitic facies invasion, especially on account of the lower argillitic term. In fact, the limits of all three geological formations discussed up to now have a diachronic character. Thu, the Țăndărei Argillitic Facies starts north-east of the Danube in the Lower Ordovician and transgressively progrades south-westwards in Dobrogea, up to the Ludlowian. The Smirna Quartz-Sandstone Facies starts in South-East Dobrogea in the Pridolian and regressively progrades north-eastwards up to the Eifelian.

The formation under discussion is made of quartzitic sandstone, gritty lithic sandstone with bioclasts, subfeldspathic or siltic grauwacke with siltic clay and shelly limestone interbeddings. The arenitic sequence has a variegated aspect, which the violet, garnet reddish, black and white shades lend to it. This aspect, together with the fish-fauna (Smirna 2841)

Fig. 2. - South Dobrogea pre-Jurassic synthetic profile. 1, limestones; 2, dolomites; 3, anhydrites, gypsum; 4, marls, clays; 5, sandstones, sands; 6, conglomerates; 7, macrofauna; 8, microfauna;
9, spore pollen; 10, unconformity; 11, core sample.

33

6

and the vegetal remains (Smirna 2341, Mangalia 5082) remind the Old Red Sandstone facies.

According to paleontological and log studies, the Smirna Arenitic Facies is specific to the Eifelian. Locally (Mangalia 5083, Călărași 2881), this facies begins, as already said, from the Eodevonian and it is not impossible for the quartz-sandstone sequence in the Mangalia 5083 well to equally comprise part of the Pridolian. At the same time, in the Mangalia 5082 well, the Eifelian terrigenous facies also extends into the Givetian base, in a clay and marly-limestone complex.

The Emsian, in the Smirna Facies, has been identified at Călărași (well 2881), where I or d an (1977) points ont numerous fossil forms, out of which *Pilletina asiatica* (V e r n.). The Mangalia 5082 well has registered the following species of brachiopoda and bivalvia, Eifelian in look: *Fimbrispirifer* sp., *Isortis* sp., *Ctenodonta* sp., *Pholadomiacus* sp., as well as the vegetal remains: *Pseudosporachnus* K r e j c i, P ot., B e r m., *Aneurophyton germanicum* K r ä u s, W e i l., *Calamophyton primaevum* K r ä u s, W e i l., *Hyenia* sp. The overlying horizon, made of black clays and marly-limestones, transiting to the carbonate term (the Călărași Formation), comprises macrofossil forms which might be assigned to the Givetian (R ă i l e a n u et al., 1966), such as: *Nowakia maureri* Z a g o r a, *Homoctenus* cf. banusi (B o u c e k, P r a n t 1), *Fimbrispirifer* sp., *Isortis* sp., *Uncinulus* sp., *Ctenodonta* sp., *Bellerophon* sp.

All the above-described lithostratigraphic units make up the Ialomita Group.

4. The Călărași Formation consists of a thick, predominantly carbonate sequence normally overlying the Smirna Quartz-sandstones and, in most cases, unconformably underlies the Vlașin Formation and other younger stratigraphic terms.

In South Dobrogea, the Călărași Formation has been crossed by the wells Oltina 5048 (?), Negru-Vodă 5065, Comana 1, 10, 13, Mangalia 5082 and 5083. The Adamclisi 5063 well might be added too, if data supplied by it were not so imprecise.

The above-mentioned carbonate sequence has been completely crossed only in Mangalia, i.e. where subject to denudation effects. At Comana, the well 13 drilled 1227 m in these deposits without wholly crossing them. North of the Danube, in the Călărași 2881 well, the formation bearing the same name reaches 2520 m.

The paleontological content furnished by South Dobrogea wells demonstrates that the Călărași Formation includes the Givetian, the Frasnian and the Visean. The presence of the Famennian and Tournaisian has not been proved. Still, north of the Danube (Călărași), the Călărași Formation seems to represent a complete succession from Givetian to Visean included. In the Mangalia 5082 well, overlying the already-mentioned Givetian fauna clay complex, a marly-limestone horizon is first encountered, then a calcareous one. The following forms have been registered in the former: *Mucrospirifer mucronatus* (C o n r a d), *Punctatrypa nalivkini* H a v l., *Atrypa reticularis kuzbassica* R z n o s, *Chonetes aff. scitulus* H a 11., while *Athyris* aff. *nuculoidea* C o o p e r, *Chonetes rowei*
7

S c h l., Mucrospirifer mucronatus (C o n r a d), Spirifer audaculus C o n r a d, Spinocyrtia martinofi (S t u c k.), Eleuterokoma leducensis K r i k. etc. occur in the latter. According to R \check{a} i l e a n u et al. (1966), the first complex is likely to belong to the Givetian, while the second — to the Frasnian, possibly to the Upper Givetian.

The microfauna proves the presence of the Givetian in the Parathurammina and Icriodus curvatus (wells Comana 10, 13) and Pontocypris? bythocyproidea (Mangalia 5082 well) biozones. The Upper Givetian-Frasnian interval is attested by the Icriodus and Polygnatus Biozone, equally registered at Comana (1,13). Frasnian microfossils, grouped within the Palmatolepsis distorta Zone, have been reported from Comana (well 10) and Mangalia (well 5082). The Upper Visean has been identified at Comana (well 13) and Negru-Vodă (well 5065) by the Millerella and Valvulinella youngi (Brady) Zone. Palynologically, only the Givetian and the Frasnian have been identified — the former by the Dybolisporites, Calyptosporites, Ancyrospora and Hystrichosporites Zone, the latter by the Geminospora and Samarisporites triangulatus Zone. As to the Famennian and Tournaisian, apparently lacking in South Dobrogea, they are to be added to the sunken Călărași Zone with complete sedimentation (depocenter) and, possibly, to the north-eastern part of Bulgaria.

With respect to the Călărași Formation it is worth emphasizing that in the south-eastern extremity of South Dobrogea, the Dinantian might pass on into an argillitic facies, i.e. the Vlașin Formation facies, identified north of the Danube. Once again, this might be a matter of diachronic boundary. This hypothesis relies on the fact that in the Varna Depression, the Dinantian is terrigenous, sometimes paralic. This situation is attested by Ograjden 120 well, near the Romanian-Bulgarian boundary, south of Negru-Vodă.

5. The Segarcea Formation. In South Dobrogea, the Middle and Upper Carboniferous, Permian, Lower and Middle Triassic deposits have not been signalled yet. They insert in the stratigraphic succession north of the Danube and in north-eastern Bulgaria. Consequently, the Călărași Formation or the terms older than the Givetian are directly overlain by the Segarcea Formation, which is in fact an almost exclusively terrigenous sequence of marine, lagunary and continental origin.

The Segarcea Formation has been encountered by the Independența 5064 well and probably by the boreholes Castelu 5053 and Techirghiol 5069. None of the mentioned wells crossed it completely, the thickest section (103 m) being opened at Independența. The equivalent of the respective deposits is known both north of the Danube and over the Bulgarian territory where, concomitantly with their considerable thickening (in the well R1 Dulovo they reach about 800 m), they mostly change into limestones and dolomites.

As already shown, the Segarcea Formation transgressively and unconformably covers various older formations and also transgressively and unconformably underlies the Jurassic, locally the Upper Cretaceous, too.

Petrographic analyses from Independența 5064 well indicate, in the crossed profile, ferruginous feldspathic sandstone, grauwacke, ferruginous – occasionally mottled clay, calcareous ferruginous clay, marl – frequently gritty and ferruginous, calcareous – gritty, ferruginous argillite, gritty limestone.

The microfauna identified in the Segarcea Formation has been grouped into three paleocenoses: the Upper Ladinian-Lower Carnian Zone with Epigondolella hungarica, the Zone with Stellatochara and Darwinulla — typical of the Carnian — and the Zone with Polytaxis seelandensis and Ostracoda 800—which might correspond to the Rheto-Liassic. In other words, in South Dobrogea, the Segarcea Formation is of a Carnian age, with transitions both to the Upper Ladinian and the Retho-Liassic. It is not impossible for the sequence opened by the Techirghiol 5069 well to belong to the Permian—Lower Triassic i.e. to the Rosiori Formation.

The pre-Jurassic deposits are affected by a fault network, only partly known. Starting from the pattern conceived north of the Danube, it would be possible to prove, on the South Dobrogea territory, the presence of four regional NW-SE trending dislocations, namely: Ianca-Palazu (more or less an equivalent of the Capidava-Ovidiu Fault, at the pre-Jurassic level), Smirna-Agigea, Brăgăreasa-Eforie and Lipia-Mangalia. The fault throw might exceed 500 m. Taking into account the situation present at Palazu (V i s a r i o n et al., 1979) and Ianca, the main blocks are supposed to successively overthrust from south-west to north-east, along the separating faults. Within the large blocks (megablocks), there might be numerous disjunctive, still unidentified, accidents.

The presence of slight folds at the outcropping Lower Cretaceous and Jurassic level (C h i r i a c, 1979), associated to the low and moderate $(5^{\circ} - 40^{\circ})$ values of strata dipping, determined by wells, also admit in South Dobrogea a plicative tectonics at the pre-Jurassic formations level. Both with disjunctive accidents and with plicative elements, the main geodynamic element seems to be the pushing north-east coming process, i.e. the East-European Platform displacement.

REFERENCES

- Beju D. (1972) Zonare și corelare a Paleozoicului din Platforma moesică pe baza asociațiilor palino-protistologice. Rev. Petrol și Gaze, 12, p. 714 - 722, București.
- Chiriac M. (1979) Teză de doctorat, Universitatca București.
- Grigoraș N. (1956) Asupra prezenței Silurianului în Dobrogea. Bul. Șt. Acad. R.P.R., II, I/3 - 4, p. 169 - 180, București.
- Ianovici V., Giuşcă D., Mutihac V., Mirăuță O., Chiriac M. (1961) Privire generală asupra geologici Dobrogei. Asoc. Geol. Carp. - Balc. (Congr. V). Ghidul excursiilor, 92 pag., București.

Iordan M. (1967) Contribuții asupra Paleozoicului inferior din forajul de la Mangalia pe baza trilobiților și tentaculiților. D. S. Inst. geol. LIII/1, p. 367 - 387, București.

- (1977) Teză de doctorat, Universitatea din Iași.
- Richards R. (1971) Notă asupra graptoliților din Platforma moesică. D. S. Inst. geol., LVII, p. 5 - 19, București.

9

- Richards R. (1975) O nouă contribuție la inventarul graptoliților silurieni din Platforma moesică. D. S. Inst. geol., LXI, p. 17 - 23, București.

- Maier O., Mihu E. (1976) Report, the archives of the Geological Enterprise of Prospection for Solid Mineral Substances, Bucharest.
- Năstăscanu N., Paraschiv D. (1973) Prezența depozitelor carbonifere în sudul Dobrogei. Rev. Petrol și Gaze, 4, p. 199 - 204, București.
- Paraschiv D., Dăneț N., Popescu M. (1979) Aspecte geologice ale Formațiunii de Călărași. Rev. Mine, Petrol și Gaze, 11 - 12, p. 572 - 578, București.
 - Năstăseanu N., Dăneț T. (1973) Date noi asupra Carboniferului din sudul Dobrogei. Rev. Petrol și Gaze, 10, p. 593 - 595, București.
- Răileanu G., Iordan M., Ali-Mehmed Dăneț, Beju D. (1966) Studiul Devonianului din forajul de la Mangalia. D. S. Inst. geol., L11/1, p. 323 - 339, București.
 - Iordan M., Săndulescu E. (1967) Considerații asupra Paleozoicului inferior din zona Călărași. D.S. Insl. geol., LIII/1, p. 419 - 426, București.
 - Semaka Al., Ali-Mehmed Dăneț N. (1965) Le Devon de la Dobrogea méridionale. Assoc. Geol. Carp. -Balc. (Congr. VII), I. p. 11 15, București.
- Richards R., Iordan M. (1975) Romanian graptolites from boreholes on the Moesic Platform. Geol. Mag., 112, p. 241 - 255, Great Britain.
- Visarion M., Maier O., Nedelcu-Ion C., Alexandrescu R. (1979) Modelul structural al metamorfitelor de la Palazu Mare, rezultat din studiul integrat al datelor geologice, geofizice și petrofizice. Stud. cerc. geol., geof., geogr., seria geof., 17/1, p. 95 – - 114, București.

QUESTIONS

N. Baltes. 1. What is, in your opinion, the extension of the pre-Jurassic formations of South Dobrogea in the continental platform of the Black Sea?

2. What do you think about the importance of the pre-Jurassic formations you have presented concerning oil potential source-rocks and also as reservoir rocks?

Answers: 1. The boreholes drilled in the field indicate differentiations in the distribution of the Paleozoic formations on an east-west trend, particularly nearby the sea shore. Consequently, as there is no evidence in the acquatorial sector, the spreading of the Paleozoic beyond the shore line is questionable.

2. The Paleozoic of the Moesian Platform (Țăndărei Argillites, Călărași Formation and Vlașin Formation) could provide industrial quantities of hydrocarbon as pointed out by the oil and gas occurrences in the mentioned formations, the Lower Triassic deposits as well as the results of geochemical analyses.

As regards the accumulation capacity of the Paleozoic, it has been proved by tests and geophysical and laboratory analysis for the Mangalia quartzites, Smirna arenaceous quartzites, and Călărași Formation.

DISCUSSIONS

M. Mureşan. I think that there are enough arguments to state that the Ianca-Palazu line represents an overthrust, as mentioned previously in several papers concerning the Dobrogea (Visarion, Săndulescu, Maier). First of all, the fact that the Cocoşu Series and the Greenschist Series are heterogeneous isochronous deposits (Mirăuță) indicates that they have been brought into contact by an important tangential movement (overthrust). Secondly, it has been proved at Palazu that the Carelian gneissic series overlies the greenschist series.

Institutul Geologic al României

REVIEW OF THE PALEOZOIC-MESOZOIC OF NORTH HUNGARY¹

BY

KÁLMÁN BALOGH²

The North Hungarian Palaeozoic-Mesozoic is outcropped in the Aggtelek Mts, i.e. the southern continuation of the South Slovakian Karst, in the Rudabánya Mts, further in the Szendrö-Uppony range and in the Bükk Mts. Tectonically, the first two mentioned mountains belong to the Silicicum, and the two latter ones, however, to the Bükkium (Fig. 1).

This paper gives a rapid glance over the stratigraphical changes resulted in by newer micropalaeontological and faciological studies in the named areas.

1. The unmetamorphosed Permian and Mesozoic of the Aggtelek Karst and its Slovakian continuation begins with the Perkupa Evaporite Formation of Upper Permian age (Pl. I). It is overlain by predominantly terrigenous "Seis Beds", then by "Campil Beds", being far richer in both carbonates and fossils. The base of the Middle and Upper Triassic carbonate platforms is formed by the dolomites and limestones of the Gutenstein Formation, but their bulk consists of Steinalm, Wetterstein, Tisovec, as well as Furmanec limestone.

The deep-water zones among the reef-and reef-lagoon facies are indicated in both Slovakian and Hungarian territory by Schreyeralm Limestone in the Illyrian and by Hallstatt Limestone from the Ladinian to the Norian. The grey and (at least partially) cherty Reifling Limestone was still known among the basinal facies.

But the borehole Szölösardó-1 crossed such a basinal sequence that strongly differs from all the mentioned ones. Namely, the dasycladaceanbearing Steinalm limestones transit upwards gradually to a grey-coloured and cherty dolomarl complex. The latter enclosing *Gondolella regalis* M o s h e r, a leading fossil of the Bithynian, presses down the age of its footwall far deeper as it was supposed till now. The deepest part of this complex contains a thin acid tuff layer, too.

¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association 1981 September 8 - 13, Bucharest, Romania.

² Budapest, XIII. Visegràdi-u. 17. III. 6. Hungary.

REVIEW OF THE PALEOZOIC-MESOZOIC OF NORTH HUNGARY

The dolomarl complex is separated from the overlying, varicoloured Nádaska Limestone — representing a submarine slope-sediment — by a fault zone. Therefore the latter begins here only with its upper Illyrian part. But in other places of the karst region the Pelsonian-Lower Illyrian horizons of the Nádaska Limestone were also evidenced by cono-

	1	Locai assem	blage biozones	Substages	
, N	16	M. communisti-M. nodosus	/ Kl. macrolobatus/		
POT SCH SCH	15	M. angustus	TUVALIAN		
	14	4 G. tadpole / Tr. dilleri/			
- SÓ- OS- RDÓ	13	GI. malayensis	/ Sirenites + Tr. austriacum/	JULIAN	
ALS	12	G. polygnathiformis	/>Tr. zonoides/		
	11	G. foliata n. ssp.	/=* Tr. 20n/	CORDEVOLIAN	
ш Z	10	M. mostleri-M. mungoensis	/ Fr. sutherlandi/		
0	9	G. foliata n. sspG. excelsa			
S J	8	M. hungaricus G	LANGOBARDIAN		
×	7	M. truempyi			
-	6	G. trammeri-G. transita	FASSANIAN		
KA	5	G. trammeri-G. excelsa			
A S	4	G. excelsa			
D	3	G. excelsa-G. constricta			
N	2	G. comuta			
	1	G. constricta	TLLYRIAN		

donts. Higher up, the grey-coloured Cordevolian-Lower Tuvalian Szölösardó Marl Formation, totally unknown hitherto in the Slovakian/Hungarian karst region, then the Tuvalian part of the Pötschen Limestone were crossed.

In these basinal sediments 16 local assemblage biozones are distinguished (Fig. 2) by means of conodonts as well as macrofossils (*Daonella* cassiana M o j s., *Halobia rugosa* M o j s., *Austrotrachyceras* sp., *Sirenites* sp.). The naturally outcroped part of the Pötschen Limestone enclosing *Halobia styriaca* M o j s. is already of Lower Norian age; its top, however, may reach up to the Upper Norian.

On the Hungarian territory, the Rhaetian sediments (i.e. the Kössen Beds of Drnava) and the Zlambach Marls of Silicka Brezova are not - or only in a very small extension - outcropped.

The fact that the Hungarian part of the karst region was also transgressed by the Jurassic sea after a gap at the beginning of the Liassic,

3

K. BALOGH

4

was already supposed on the basis of remnants of the Hierlatz, Adneth and spotted marl facies as well as the varied Bathonian-Callovian radiolarites found in some places of the South Slovakian Karst. However, only the studies of M. S y k o r a and M. M i š i k (1980) on the pebbles of Gosau and Miocene conglomerates have made evidence that the Jurassic

PALAEOGENE		PALAEOGENE	? Gap ?		
CRETACEOUS		SENONIAN	Fresh-water limestone		
		MIDDLE			
		AND	?		
		LOWER CRETACEOUS			
		TITHONIAN	Clypring -bearing limestone		
	MALM	KIMMERIDGIAN	Light-coloured oncolithic limestone		
		OXFORDIAN			
	æ	CALLOVIAN			
SIC	GE	BATHONIAN			
AS	000	BAJOCIAN	Spotted limestone and spotted marl		
IUR		AALENIAN			
	LIAS	TOARCIAN			
		PLIENSBACHIAN -	Adnet Hierlatz limestone		
		SINEMURIAN	Gresten beds		
		HETTANGIAN	Gap		

Fig. 3. — Stratigraphy of the Jurassic and Cretaceous sediments of the Aggtelek Karst and its continuation in South Slovakia completed with new data of Prof. Mišik.

sequence embraces also the Malm (taken as a whole), and it ends with a shallow-marine Tithonian, and the Upper Cretaceous is represented by fresh-water limestones (Fig. 3).

2. Up to the Pelsonian, the nonmetamorphosed Mesozoic of the Rudabánya Mts is substantially identical with that of the Aggtelek Karst. The Steinalm Limestone, however, is also overlain here by several basinal facies classified as Ladinian or Lower Carnian in 1949. After newer data, however, this basinal sequence reaches as high as the Liassic, where it is accompanied by a quartz-porphyry volcanism.

Institutul Geologic al României

42

It is possible that some members of the slightly metamorphosed Meliata sequence underlying the Silicicum are present also in the Rudabanya Mts and in the tectonic zone of the upper Bodya Valley.

The age and appurtenance of the diabase serpentinite and natrongabbro masses in the upper Bodya and the Zosya Valley to a distinct tectonical unit is also questionable. In most instances they appear as enclosed into an evaporitic complex considered as old as Late (?) Permian. But they form only smaller bodies cut out from their original connections. Their K/Ar age runs between 197 and 212 m.y. A magmatism of similar \mathbf{K} character is hardly imaginable in the Silicicum.

Summarizing, the following theses seem to be evident.

a) The nonmetamorphosed Permian and Triassic of the Silicicum is very similar to those of the Hallstatt nappe of the Northern Limestone Alps.

b) With its Jurassic featuring a North Alpine character, the Silicicum forms a tectonic unit which is independent of the ranges of the Central Transdanubian Mountains.

c) In contradiction to this, the Mesozoic of the Silicicum may be interlinked with the slightly metamorphosed Meliata sequence through the nonmetamorphosed Rudabánya-type series.

3. In consequence of the conodont-findings of K o z u r and M o c k (1979) and mainly of K o v á c s, K o z u r (1980) the age of the Szendrö and Uppony sequences (Fig. 4) must have been significantly modified. They are slightly metamorphosed. The degree of the metamorphism varies by zones, but it is never stronger than the quartz-albite-muscovitechlorite subfacies of the greenschist facies.

The oldest member is the light-grey Nekezseny Limestone with traces of contemporaneous submarine diabase volcanism. Previously it was considered of Middle Triassic age; it belongs to the Lower Devonian (K o v á c s, 1980).

The Middle Devonian-lowermost Frasnian is represented by the dark-grey Szendrölád Limestone Formation bearing Heliolites, Favosites Pachyfavosites, Thamnopora, Gracilopora, Alveolites, Syringopora and conodonts. The upper part of this formation seems to be interfingered with the dark-grey Irota Phyllites, the uppermost beds of which reaches as far as Lower Famennian. The light-grey Abod Limestone (and perhaps also the light-coloured parts of the Borsod Limestone in the Szendrö Mts as well as the light-grey Uppony Limestone) can be placed to the Frasnian /Famennian boundary, but - for the time being - only the age of the Abod Limestone is evidenced by Kovács, Kozur (1980).

Individual parts of the "Lázbére Formation" in the Uppony Mts consisting of schists, siltstones, grey limestones, diabase masses and tuffs bear Upper Devonian conodonts (Kozur, Mock, 1977 a). The bulk of the formation contains no fossils, its other parts belong to the Lower Viséan, its uppermost beds, however, seem to be as old as Bashkirian. The age of the overlying Tapocsány Formation, forming a thick, darkgrey schist and siltstone complex with manganese layers and radiolarites, but without limestones interbedded, is not definitely known. Its deeper-

 $\mathbf{5}$

Fig. 4 Institutul Geologic al României 7

differs from the other Carboniferous sequences of the marine facies Bükkium.

Undoubted Upper Visean, Serpukhowian and lowermost Bashkirian were found by Kovács and Kozur (1980) in the Rakaca Marble Formation of the Szendrö Mts, being divisible by means of a shaly intercalation into a lower, light-grey part and upper, dark-grey one. Its cover, the dark-grev Szendro Phyllite Formation consisting of a rhythmic alternation of schists and coarse-grained metasiltstones intercaled by grey limestone beds and olistolites, belongs in all probability to the Bashkirian.

The present data are not sufficient to reach clear conclusions as regards the age of the gaps and the metamorphosis of the mentioned sequences. The manifestations of the Hercynian metamorphism are undistinguishable from those of the Alpine metamorphosis.

4. The profile of the Bükk Mts begins with a thick alternation of grey sericitic shales, silt and sandstones (Fig. 4). Unfortunately, their immediate connection with the Uppony Mts could not be stated because of an important thrust plane and several faults; whereupon the connecting area is covered by Miocene sediments. The lowermost shales being free from fossils can be classified as Upper Serpukhowian-Bashkirian. They are similar to the South Alpine Hoochwipfel flysch, but their ages not known precisely. This lower part is separated by coarser-grained siltand sandstones from the higher shales containing crinoids, brachiopods, gastropods, trilobites, plant-remnants and Hemifusulina moelleri R a u s er that make probable the deepest horizons of the Moscowian stage.

The Upper Moscowian, Kasimowian and Gshelian shales and limestones include a rather rich fauna (Fusulinids, Rugosa, Chaeteids, Gastropods, Bivalves). This part of the section contains local lenses of lyditebearing conglomerates and quartzose sandstone beds reminding of the Auernig Facies of the Carnic Alps and the Dinarides.

It did not succeed to prove the Lower Permian. Likewise, the time span of the evaporitic series overlying different horizons of the Middle and Upper Carboniferous and characterized by red and light-grey sandstones, green shales, anhydrite-layers and (on the top) yellow or grey, early-diagenetic dolomites was left open. However, it seems to be comparable with the Košna or the Gröden beds. The upper boundary of this Szentlélek Formation is much clearer because the overlying Nagyvisnyo Limestone includes a rather rich Baisalian flora and fauna, moreover some Dorashamian microfossils. This fact consolidates the old supposition concerning the uninterrupted transition between the carbonates of the Permian and Scythian.

After the Lower Triassic and Anisian the formation of the Middle Triassic carbonate platform is interrupted in the Illyrian (Pl. II). This is proved by the intercalated dolomite-breccias being comparable with the Uggowitz breccia and by a marine porphyrite volcanism. After this acci-

Fig. 4. - Stratigraphy of the Paleozoic complexes of the Szendrö, Uppony and Bükk Mts completed with the new results of Kovács.

K. BALOGH

8

dent the forming of the carbonate platform continued up to the end of the Ladinian. The Carnian sericitic shales with diabase and cherty limestone intercalations refer to deepening of the sea. But from the start of the Norian probably to the end of the Triassic, the grey, deep-water Felsötárkány Limestone, including also products of a diabase and quartz-porphyry volcanism, is interfingered with different light-coloured (partly coralbearing) platform facies. The succession of the Jurassic rocks incorporated previously with the Carnian sericitic shales is not cleared as yet. Appearing mainly in the SW Bükk, they contain, beside a flysch-like alternation of dark-grey shales, silt- and sandstones also siliceous and manganiferous shales or oolithic limestones. In places they include Middle Liassic foraminifers and Dogger radiolarians. In the Szarvaskö-Darnóhegy zone they include also masses of diabases, spilites and pillow-lavas, as well as gabbros and peridotites which seem to belong to a probably Jurassic magmatic activity.

The slight Alpine metamorphism of the Paleozoic and the Mesozoic of the Bükk Mts varies by zones. But the Gosau Beds at Nekézseny were not touched by this metamorphosis. Subsequent to the post-Gosau movements the Upper Eocene transgresses over the evolved structural elements.

REFERENCES

- Àr kai P. (1977) Low-grade Metamorphism of Palaeozoic Sedimentary Formations of the Szendrö Mountains (NE-Hungary). Acta Geol. Ac. Sci. Hung. 21, 1 - 3, 53 - 80. Budapest.
- Balogh K. (1981) Correlation of the Hungarian Triassic. Acta Geol. Acad. Sci. Hung. 24, 1, 3 - 48, Budapest.
 - Kovàcs S. (1981) The Triassic Sequences of the Borehole Szölösardó-1. Rel. annuae Inst. Geol. Publ. Hung., 1979, (In press) Budapest.
- Kovács S. (1980) Lower Devonian Conodonts from the Strázsahegy, near Nekezseny Uppony Mts., North Hungary. Rel. annuae Inst. Geol. Publ. Hung., 1979 (In press) Budapest.
 - Kozur H. (1980) Preliminary Report on the Investigations of Conodonts in the Szendrö Mountains. Manuscript, in Hungarian.
- Kozur H., Mock R. (1977 a) On the Age of the Palaeozoic of the Uppony Mountains (Worth Hungary). Acta Min-Pelr., Szeged, 23, 1, 91 - 107.
 - , Mock R. (1977 b) Conodonts and Holothurian Sclerites from the Upper Permian and Triassic of the Bükk Mountains (North Hungary). Acta Min--Petr., Szeged, 23, 1 109 - 126.
- Mihály S. (1978) Die mitteldevonischen Tabulaten des Szendröer Gebirges. Geol. Hung. Ser. Geol., 18, 115 - 191, Budapest.
- Mišik M., Sýkora M. (1980) Jura der Silica-Einheit, rekonstruiert aus Geröllen, und oberkretazische Süsswasserkalke des Gemerikums. Geol. Zborn. Geol. Carp., 31, 3, 239 – 261, Bratislava.

LITHO - AND BIOSTRATIGRAPHIC SKETCH OF THE TRIASSIC IN THE AGGTELEK MOUNTAINS (North Hungary) AFTER BALOGH (1980)

Imprim. Atel. Inst. Geol. Geof.

STRATIGRAPHY OF THE MESOZOIC OF THE BUKK MOUNTAINS MODIFIED BY MEANS OF THE NEW DATA OF KOZUR

K. BALOGH. Review of the Palaeozoic - Mesozoic of North Hungary.

SENON Gosau beds Diabase, gabbro, wehrlite JURASSIC Southwest Bükkian Schist-complex Choristoceras marshi RHAETIAN ? Choristoceras haueri ? Bükkfensik Cochloceras suessi Répáshuta Limestone Formation SEVATIAN Monotis salinaria Limestone Bervavölgy Limestone Formation and synonims Sagenites giebeli haueri, Met. bident. Metapolygnathus posterus, Met. abneptis Felsőtarkany Bagolyhegy Neo -Himavatites columbianus VVVVV NORIAN megalodon sp. Quartz - por For-ALAUNIAN V.V.V.V 4 Cyrtopleurites bicrenatus . phyry MB 1500 abneptis C Γ. F. F. Laballa suessi. . * . mao Gemerithyris sp. . Óhuta Juvavites magnus . 4 Limestone Polygyrina ele -Diab Γ. 4 * . 4 gans. Naticopsis tion . -LACIAN Malayites paulckei Formation cf. hoernesi 0 F. F s Halobia cf. styriaca Guembelites jandianus a a Formation Metap. nodosus, M. pseudo-Klamathites macrolobatus > diebeli, Gond navicula TUVALIAN Tropites subbullatus CARNIAN Tropites dilleri Vessző svölgy Letrase L. L. Qiabase M) Sirenites JULIAN 450 Trachyceras austriacum Trachyceras aonoides CORDEVOLIAN Trachyceras aon Sericitic Shale Formation A A A

2				Frankites sutherlandi				
0	NIAN	LONGOBARDIAN		Protrachyceras archelaus	400		Feherkő Limestone Formation	
n	DID	FASSANIAN		Protrachyceras curionii				Gladigondoella tethydis, Gondo- lella excelsa
•				Protrachyceras reitzi	250	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Szent-Istvánhegy Formation	
x p p		ILLYRIAN		Paraceratites trinodosus	50		Nyavalyas- Savos ? tető Lime- Breccia Beds	Glomospira articu - ?. losa, Gl. tenuifistula, Gl. sigmoidalis, Tri- adophyllum
5	Z	PELSONIAN	1	Balatonites balatonicus		LO L		
-	ISIA		z	Anagymnotoceras ismidicus	2000		Vadászvölgy	?
	AN	BITHYNIAN	VIIA	Nicomedites osmani			Dolomite	
		AEGEAN	ANATC	? Paracrochordiceras anodosum			Hamo	Meandrospira dinarica Neritaria stanensis
-		SPATHIAN		Keyserlingites subrobustus	-			Naticella costata
	IAN			Tirolites carniolicus				
	NEX			Tirolites cassianus				Tirolites cassianus Costatoria costata
	E		Z	Anasibirites pluriformis			Ablakoskovolgy	Myophoria cf. laevigata Unionites canalensis
3	0	SMITHIAN	ALIA	Hedenstroemia himalayica	000			Costatoria costata Claraia cf. aurita
0			NW	Vavilovites markhami				Unionites fassaensis, Claraia sp
	JAN	DIENERIAN	NAI	Meekoceras kraffti				
	NDI	GRIESBACHIAN		Ophiceras connectens				?
	=			Otoceras woodwardi				Gymnoc bellerophontis.
LA	TE	PERMIAN					Nagyvisnyo Limestone Formation	Anchignathudus minutus. Ste- panovites dobruskinae, Leptodus nobilis, Tschernyschewia typica
IUAR	RUL	INSTITUTULU		DE GEOLOGIE SI C	SEC	FIZICA, VOL. LIX.	Imprim	Atel.Inst.Geol.Geo

Institutul Geologic al României

PI. 11.

FORMATION'S SALIFÈRES DE LA PLATE-FORME MOESIENNE (ROUMANIE)¹

PAR

DUMITRU PARASCHIV²

Les travaux de forage effectués dans la Plaine Roumaine ont signalé des dépôts salifères dans trois secteurs de la Plate-forme moesienne : dans la partie nord-ouest, à Bibești, dans la zone centrale, à Cartojani et dans la partie sud, délimitée à peu près par les rivières d'Argeș et d'Olt (fig. 1). La séquence sedimentaire à sel de Bibești, représentant l'extension vers le sud de la zone évaporitique badénienne qui se développe dans le flanc interne, plisse, de l'Avant-fosse carpathique, n'a pas constitué une surprise. Ces dépôts, connus depuis longtemps à la surface aussi bien que par les forages, ont fait l'objet de nombreux études et rapports. Par conséquence, le travail ci-présent sera concentré sur les formations salifères des secteurs sud et central de la Plate-forme moesienne.

Les premiers indices sur les halites du fondement de la Plaine Roumaine proviennent de son secteur sud. Elles datent de 1956, lorsque le puits 3 Putinei, arrivé à 2746 m de profondeur, a identifié, à l'aide d'une carotte mécanique, de l'anhydrite massive et du sel blanc grossier.

A cause de certaines difficultés techniques, on n'a plus répété le carottage mécanique et on a arrêté le forage à 2839 m. Selon la diagraphie électrique, les bancs à sel et à anhydrites commencement à environ 2720 -2740 m (planche) et se succedent jusqu'à la profondeur finale. Dans les conditions ci-dessus, le puits 3 Putinei n'aurait pas pu traverser la sequence evaporitique en entier, cette dernière allant au-dessus de 2839 m.

On aurait bientôt confirme le sel de Putinei grâce à trois autres forages, achevés en 1962. Il s'agit des puits 3 Lita, 60 Chiriacu et 100 Vlasin, tous situés dans le même secteur sud de la Plate-forme moesienne.

Dans le puits 3 Studina, on a rapporte du sel blanc grossier aux éléments d'anhydrite, dans la carotte récuperee de l'intervalle 2340 - 2341. On n'a continué le forage que le long d'un seul metre; ainsi, il est très probable que le puits se soit arrête dans le sel. Selon les mêmes

¹ Note présentée au 12 ême Congrès de l'Association géologique Carpatho-Balkanique, 8 - 13 septembre 1981, Bucarest, Roumanie.

² Ministère du Petrole, Bucarest.

D. PARASCHIV

diagraphies électriques, les bancs de sel à anhydrites pourraient se développer à partir d'environ 2300 m vers le fond. Donc, ce puits n'a pas entièrement traverse la séquence evaporitique.

Dans le puits 60 Chiriacu (fig. 1 planche), on a extrait une première carotte à 2661-2662 m, au sel blanc, partiellement rouge et aux impurités marno-calcaires gris-verdâtres, ayant l'aspect d'une brèche. On a

Fig. 1. – La plate-forme moesienne et la position geographique des puits qui ont rencontré des formations salifères : 1. forages ; 2. localités ; 3. ligne de Bibesti-Tinosu.

récupéré du sel blanc grossier, aux intercalations dolomitiques et anhydritiques à la profondeur de 2915 — 2916 m. Entre ces deux prises de sel, on a également extrait deux carottes des intervalles de 2733 — 2734 m et de 2848 — 2849 m qui ont représenté des marnes, respectivement des calcaires aux diaclases remplies, dans les deux cas, par de cristaux de sel. Le forage a continué sur les 278 m sous la dernière carotte à sel, sans signaler pourtant de nouvelles halites. Selon le diagramme électrique, corrélé aux carottes mécaniques, on voit que la formation salifère se développe sur une épaisseur d'environ 360 m (2640 — 3000 m). Le long de cet intervalle, on pourrait séparer trois bancs masifs de sel associé aux anydrites. La formation à sel est bordée de calcaires et de dolomies. On y trouve également des dépôts carbonatés et marno-calcaires entre les bancs de sel, ce qui suggère que la formation salifère constitue un épisode dans la séquence carbonatée triasique.

Le puits 100 Vlașin a rencontre, à 2545 - 2547 m, du sel blanc aux tâches rougeâtres, associe aux débris calcaires et marno-gréseux, brunrougeâtres. A 2802 - 2804 m on a signalé de l'argile aux intercalations anhydritiques, les diaclases des roches étant remplies de sel rougeâtre. Les diagrammes géophysiques du puits suggèrent que la formation à sel commence à environ 2520 m et s'étend jusqu'à peu près 2830 m. De là jusqu'à 4215 m (la profondeur totale du forage) on a traversé successivement les roches carbonatées du Trias, les grès et les argiles quasiconti-

48

nentaux permiens (possible triasiques inférieures aussi) et les pélites charboneuses du Namurien.

Tous les quatre forages ci-discutés appartiennent à une zone dépressionnaire de la Plate-forme moesienne, connue sous le nom de "la Dépression Roșiori-Alexandria". Formée à l'épôque du diastrophisme sudétique — sinon plus tôt, cette dépression de type plate-forme a fonctionné jusqu'à la fin du Trias. Le terme lithofacial le plus ancien connu de la dépression respective est constitué par la Formation de Călărași, une séquence presque exclusivement carbonatée, épaisse de 2000 — 2500 m, qui débute au Givétien et s'étend jusqu'au Viséen y compris. Localement, la formation en question peut être partiellement érodée.

La Formation de Vlașin y suit d'une manière discordante. Elle se compose d'argillites, d'argiles calcaires et de microgrès, plus ou moins charbonneux, grauwackes, sousgrauwackes, microconglomerats, dont l'épaisseur pourrait totaliser 1000 — 1200 m. L'âge de la Formation de Vlașin est namurien et westphalien inférieur.

Une sequence de dépôts quasi-continentaux, localement lagunaires, généralement brun-rougeâtres, suit dans l'échelle stratigraphique. Elle est représentée par des argiles, des silts, des grès, des microconglomérats, aux intercalations ou aux inclusions gypsifères et anhydritiques. Il paraît que la séquence en question, épaisse de 300 - 2500 m est d'âge permien et triasique inférieur.

Les dépôts marins-lagunaires (0 - 1200 m) généralement carbonatés, du Trias suivent transgressivement et d'une manière discordante. Formée de calcaires, dolomies, argiles calcaires, et plus rarement de grès calcaires et d'argilles, cette succession forme aussi, localement, des évaporites comme des anhydrites, des grès et du sel. Ces évaporites ont été signalées par les puits 3 Studina, 3 Putinei, 60 Chiriacu et 100 Vlașin. Selon un rapport récemment publié (P a r a s c h i v et al., 1978), les dépôts marins-lagunaires triasiques sont hétérochrones, c'est-à-dire leur dépôt a débuté au Trias inférieur (synchrone au Werfenien) dans le sud de la Plateforme, tandis que dans le secteur nord de la région, l'épisode carbonaté débute plus tard, pendant, l'Anisien. Il ne faut pas ignorer le fait que vers les périphéries de la Plate-forme moesienne, la formation marinelagunaire a été érodée, parfois entièrement. Dans le secteur Cartojani par exemple, l'érosion est arrivé jusqu'à la moitié inférieure de l'Anisien (planche).

Le Trias s'achève par une séquence de dépôts quasi-continentaux, presque exclusivement terrigène, épaisse de 0 - 900 m. Composée d'argiles, argiles calcaires, rarement calcaires, microgrès, grès, microconglomérats et localement, de magmatites, associés aux intercalations et aux nids anhydritiques et gypsifères; la séquence respective, que l'on appelle la Formation de Segarcea (P a r a s c h i v, 1981), se caractérise par une couleur rouge dominante. Elle se trouve en rapports de discontinuïté avec le terme lithostratigraphique sous-jacent aussi bien qu'avec le Jurassique qui la recouvre.

Les quelques éléments ci-mentionnes tâchent de définir la position de la sequence salifère dans le contexte stratigraphique de la Plate-forme moesienne et surtout dans celui de la Dépression Roșiori-Alexandria.

4 — c. 50

A ce sujet-là, une importance particulière gagnent les puits 60 Chiriacu et 100 Vlașin qui ont traversé des séquences assez complètes, permettant ainsi d'établir l'âge des dépôts à sel et de les localiser dans la succession triasique. En outre, on a préservé tout le matériel documentaire fourni par le puits 100 Vlașin, y compris les carottes mécaniques récemment soumises aux réexaminations.

Dans l'un des rapports recemment parus (Paraschiv et al., 1978) on mentionne que l'échantillon de terrain (la carotte) recupere du puits 100 Vlasin sur l'intervalle 2802 – 2804 m (la sequence salifere) contient une association palynoprotistologique ³, c'est-à-dire une palynozone à Angustisulcites et Triadispora, specifique pour l'Anisien. Cette association comprend les formes suivantes : Duplicisporites sp., Punctatisporites sp., Verrucosisporites sp., V. cf. thuringiaccus M ä d ., Alisporites sp., A. grauvogeli K 1., A. minutisaccus C l a r., Angustisulcites sp., A. grandis (Freund), A. cf. Klaussi (Freund), Chordasporites sp., Falcisporites sp., F. snopkovae Viss., Illinites sp., Klaussipolenites sp., K. schaubergeri (Paut., Kl.,), Limitisporites sp., Microcahrydites doubingeri K1., M. sittleri K1., Platysaccus sp., P. cf. triassicus M ä d., Pityosporites sp., Potonieisporites sp., Sahnisporites cf. reticulatus M äd., S. thomassii Mäd., Striatites sp., S. richteri (K1.), Striatoabietites cf. richteri (K1.), S. aff. aytugii Vis., Sulcatisporites reticulatus Mäd., Triadispora sp., T. crassa V i s s., T. epigona K l., Vitreisporites pallidus (Reiss.) Paut., Voltziaceaesporites heteromorpha K1.

Environ 90m plus bas, la carotte provenant de 2890 — 2890,5 m bien qu'également d'âge anisien (selon la microfaune), ne contient plus du sel.

Au dessus des deux échantillons déjà mentionnes, la carotte située à 2545 – 2547 m se fait remarquer par un contenu microfloral ladinien (palynozone à Ovalipollis et Taeniaesporites sulcatus) qui comprend les formes : Apiculatisporites sp., Calamospora aff. mesozoica C o u p., Punctatisporites sp., Verrucosisporites sp., Alisporites sp., A. aff. grauvogeli K l., Chordasporites sp., C. magnus K l., C. singulichorda K l., Classopollis sp., Cuneatisporites sp., C. radialis L e s c h., Falcisporites sp., Gardenasporites sp., Gigantosporites sp., G. cf. hallstatensis K l., Microcahryidites sp., Klausipollenites sp., D. ovalis K l., O. lunenzis K l., O. grebae K l., Parcisporites sp., P. cirratus L e s c h., Sulcatisporites sp., Taeniaesporites sp., T. cf. sulcatus (P a u t.), T. cf. alutus K l., Vitreisporites pallidus (R e i s s.) P a u t., Voltziaceaesporites heteromorpha K l.

Au même niveau on a rencontré une microfaunelad inienne (P a r a schiv et al., 1978) composée de nombreuses espèces de foraminifères et d'ostracodes⁴: Sorosphaera scabra Trif., Ammodiscus sp., Glomospira sp., G. irregularis Lip., Glomospirella sp., Tolypammina rotula Guts., Treck., Lituotuba indistincta Trif., Ammobaculites sp., Placopsilina lacera Trif., Placopsilius florae Trif., Gaudryina racenna Triff., G. triassica Triff., Gaudrynella kotlensis Trif., Pliammina densa Pantič, Agathammina austroalpina Kris, Meandrospira deformata Sălaj, M. insolita (Ho), M. pusilla (Ho), Nodosaria libera Trif., N. ordinata Trif., Dentalina hoi Trif., Pseudoglanaulina rosenbergi Ober., P. simpsonensis Tappan, Lingulina Klebelsbergi Ober.,

50

L. aff. L. major (Born.), Trocholina acuta Ober., Globigerina ladinica Ober., G. mesotriassica Ober. (foraminifères); Bairdia anisia Kozur, Darwinula fragilis Schn., Bythocypris triassica Kozur, Triasselina bicuspidata Kozur, Monoceratina minuta Kozur, Pojanites striatus Kozur, Lutkevichinella gruenndeli Kozur, L. lata Kozur L. (Cytherissinella) rectagona Kozur, L.(c) schneiderae Kozur, L. simplex Kozur, Limnocythere triassica Kozur, Telocythere tollmanni Kozur, Speluncella sulcata Kozur, Healalia (Hungarella) reniformis (Mehes).

On a également signale des associations palynoprotistologiques et microfauniques dans la carotte de 2473-2475 m, située immédiatement au-dessus de la séquence salifère.

Les bulletins d'analyse plus anciens indiquent des éléments microfloraux similaires dans les puits 60 Chiriacu et 3 Studina. A Chiriacu, les carottes à sel provenues de 2661 m et 2915 m contiennent entre autres: Ovalipolis sp., O. ovalis Kl., O. grebeae Kl., O. brevis Kr., O. lunzensis Kl., Taeniaesporites sp., T. sulcatus P aut., Cuneatisporites sp., C. radicalis L e s c h., Parcisporites sp., Sulcatisporites sp. Dans le puits 3 Studina, les carottes extraites des intervales de 2300-2301 m (à travers le sel) et de 2215-2216 m (au-dessus du sel) contiennent entre autres : Apiculatisporites sp., Cuneatisporites radialis L e s c h., Ovalipolis sp., O. lunenzis Kl., O. grebeae Kl., Parcisporites sp., Sulcatisporites sp., Taeniaesporites sp. etc.

Le contenu paléontologique des carottes examinées, aussi bien que la corrélation des profils lithologiques traversés par le puits (planche) suggèrent que le dépôt de la formation à sel a commencé pendant l'Anisien et a continué jusqu'à la fin du Landinien. Pendant tout cet intervalle, des dépôts carbonatés marins se sont accumulés à travers la Plate-forme moesienne, excepté la Dépression Roșiori-Alexandria où des lagunes ont pris naissance, localement et temporellement. Il s'ensuit que la séquence sedimentaire à sel représente une variation locale de faciés dans l'épisode carbonaté triasique de la Plate-forme. Cette conclusion vient de s'ajouter aux éléments déjà connus (dispersion, épaisseur, contenu paléontologique, etc.) présentées dans un rapport antérieur (P a r a s c h i v et al., 1978) pour soutenir l'idée que les dépôts marins-langunaires triasiques dans la Plate-forme moesienne soient assemblés dans une unité lithofaciale distinctive, c'est-à-dire "La Formation d'Alexandria". On pourrait nommer la séquence à sel "L'horizon de Chiriacu".

Les dépôts salifères de la zone centrale de la Plate-forme moesienne ont été mis en évidence par le puits 4517 Cartojani, récemment foré. Du Jurassique terrigène (la microflore du Bathonien supérieur – Callovien inférieur), ce dernier a pénétré l'Anisien (microfaune spécifique dans le puits voisin 10 Cartojani) et l'a traversé entre 2222 m et 2267 m. Dans la région de Cartojani, les calcaires et les dolomies correspondant au Ladinien et à l'Anisien supérieur ont été érodés de telle manière que la Formation d'Alexandria reste uniquement représentée par l'Anisien basal. Audessous, on a rencontré un horizon de grès aux intercalations d'argiles et de silts rouges, épais d'environ 300 m (2267-2562 m). Dans plusieurs puits de la plate-forme, cet horizon contient une association palynoprotistologique triasique inférieure (association à Lumbaldispora et Alisporites

cymbatus). A partir de 2562 m jusqu'au fond (4500 m), c'est-à-dire sur une épaisseur de 1938 m, le puits a pénétré une succession de dépôts continentaux-lagunaires, sans la traverser complètement pourtant. Ces der-

Fig. 2. - Profil synthetique du Permo-Trias salifère de la Plate-forme moesienne (selon les puits 100 Vlasin et 4517 Cartojani): 1, argiles, marnes; 2, gres, sables; 3, dolomics, calcaires; 4, gypses, anhydrites; 5, sel; 6, charbons; Ch, l'horizon de Chiriacu; Ca, l'horizon de Cartojani.

niers se composent d'argilites, partiellement calcaires, ferrugineuses, marnes ferrugineuses, microgres et gres ferrugineux aux intercalations ou nodules de gypse et d'anhydrite. La pente des couches comporte un pendage de 6° - 10°. La carotte prise entre 3606-3610 m a indiqué du sel gemme blanc et rose aux impurités formées d'argile dolomitique gréseuseferrugineuse, de grès et de nodules d'anhydrites. Environ 20 m plus

11

3

Institutul Geologic al României

bas (3628-3633 m) on a de nouveau récupéré du sel blanc et rose aux impurités marneuses brunes. Les échantillons de terrain provenus des profondeurs au-dessous de 3800 m n'ont plus indiqué le sel, mais seulement les nodules gypsifères et anhydritiques. Selon la diagraphie géophysique du puits, l'horizon à sel correspondrait à l'intervalle de 3545 – 3830 m, ce qui signifie une épaisseur de presque 300 m. Si l'on tient compte des occurrences de gypse et d'anhydrites au-dessus de 3830 m, des intercalations minces et des nodules de sel pourraient également paraître jusqu'au fond du puits.

La carotte à sel de 3628-3633 m contient quelques formes microflorales et microfauniques qui indiquent l'âge ladinien. Etant donné l'inconsistance des éléments paléontologiques et la position stratigraphique contrôlée de la séquence à sel de Cartojani, on considère ces évaporites comme appartenant au Permien. On connaît également du sel permien au sud du Danube, dans le territoire bulgaire, à Mirovo.

A partir de l'âge, du contexte stratigraphique et de la nécessité de la faire distinguer du sel triasique moyen, on propose de nommer la séquence permienne aux halites "L'horizon de Cartojani".

On pourrait expliquer l'occurrence du sel permien dans la Plate-forme moesienne au nord du Danube par la formation d'un sillon orienté estouest, au contact de deux grands segments de l'écorce. Presque continental en exclusivité dans le reste de la plate-forme, le Permien a évolué à l'intérieur du trench vers un faciès lagunaire puissant, même lacustre, à calcaires (dans la zone de Ciurești). Par conséquent, il est possible que l'Horizon de Cartojani s'étend par intermittence le long du fosse mentionné, environ entre les méridiens Ghimpați (à l'est) et Craiova (à l'ouest).

En conclusion, les puits forés sur la Plate-forme moesienne ont rencontré trois niveaux stratigraphiques à sel. Le premier est localisé dans le Badénien et appartient en effet à l'Avant-fosse carpathique. Le deuxième niveau, l'Horizon de Chiriacu, correspond à la partie supérieure de l'Anissien et au Ladinien presqu'en entier. Le troisième, l'Horizon de Cartojani, appartient au Permien. En effet, il n'y a que ces deux derniers horizons qui soient propres à la plate-forme. La figure 2 exprime d'une manière synthètique le contexte stratigraphique des horizons salifères permo-triasiques.

- ³ Determinations faites par D. Beju.
- ⁴ Déterminations effectuées par N. D ă n e ț.

BIBLIOG RAPHIE

Paraschiv D. (1979) Platforma moesică și zăcămintele ei de hidrocarburi. Ed. Acad R.S.R., 195 pag., București.

- (1981) Spre o nouă concepție asupra evoluției Platformei moesice? Rev. Mine, Petrol și Gaze, 1 - 2, pag. 75 - 78, București.
- Dăneț N., Popescu M. (1978) Date referitoare la virsta formațiunii carbonatice triasice din Platforma moesică. Rev. Mine, Petrol și Gaze, 5, 185 - 189, București.

Institutul Geologic al României

PROFILE SYNTHÉTIQUE DU PERMO - TRIASSIQUE SALIFERE DE LA PLATE - FORME MOÉSIQUE (selon les puits 100 Vlașin et 4517 Cartojani)

D. PARASCHIV. Formations salifères de la Plate-forme Moesienne (Roumanie).

THE GEOLOGICAL CONSTITUTION OF THE DANUBE DELTA¹ BY

ION PĂTRUȚ², CORNELIA PARASCHIV², THEODOR DĂNEȚ², NICOLAE BALTEȘ², NURHAN DĂNEȚ², LIGIA MOTAȘ²

Introduction

From the geological point of view, the Danube Delta represents the south-eastern part of the Pre-Dobrogean Depression, a unit of foredeep characters, comprised between the North Dobrogean Hercynian and Kimmerian Orogene and the East-European Platform. The young Delta sedimentary has been investigated by shallow wells (Liteanu, Pricăjan, 1963) and further geological surveys have been carried out, followed by drilling of several deep stratigraphic and structural wells. The results of these works have been synthetized in the oil industry by Pătruț et al. (1976) and this synthesis lies at the basis of the present paper.

1. Stratigraphic Considerations

Deep drillings in the Danube Delta have not reached the basement and its constitution is still a problem.

The sedimentary cover comprises Paleozoic to Quaternary deposits and may be separated into sedimentary cycles, delimited by stratigraphic gaps, out of which the most significant and general are those corresponding to the Upper Devonian-Permian, Lower Jurassic and Upper Cretaceous-Lower Miocene intervals.

A fault line, the Sf. Gheorghe Fault, roughly outlining the Sf. Gheorghe branch of the Danube, separates the Delta sedimentary from the North Dobrogean one.

1.1. The Paleozoic sedimentary cycle. In the north-eastern part of the Delta, the Rosetti well has been completed in a sequence with dolomites and limestones, after opening it over 300 m (Pl.-A). No fossil remains have been identified, but not far eastwards, in the Snake Island (USSR), fossiliferous Devonian limestones, of about 100 m in thickness,

¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981 September 8 - 13, Bucharest, Romania.

² Ministry of Petroleum, Bucharest, Romania.

I. PATRUT et al.

have been identified in a shallow well (B o g a e t et al., 1976) and it was estimated that these limestones plunge westwards into the Danube Delta area, being even better developed. Upper Devonian-Carboniferous carbonate deposits are equally mentioned north of the Danube, in the USSR (K a p t an et al., 1963).

In the eastern part of the Delta, the North Lacul Roşu well has opened, on about 180 m in thickness, a grey-blackish sequence of feldspathic sandstones and silicified argillites (Pl.-A). No organic remains have been identified, but a vitrocrystallolitoclastic tuff (ignimbrite) identified in the lower part of the sequence suggests a Silurian-Devonian age. In the Snake Island (USSR), a thin layer of effusive rocks has been noted in the Ludlovian (B o g a e t et al., 1976).

No clear remarks can be made on these deposits real thickness and spreading. An area of limestones and dolomites rather amply developed seems to be located, however, between the Sulina and Chilia branches of the Danube, with a northward extension in the USSR.

The carbonate Paleozoic is lacking at Lacul Roşu, as well as in Dobrogea, suggesting the uplifted position of the areas at this stratigraphic level.

1.2. The Lower Triassic sedimentary cycle overlies, slightly unconformably, the Paleozoic and consists of thick red continental deposits (400-over 2500 m), fine-coarse sandstones with argillites and marly clays. Diaclases, nodules, and thin anhydrite layers have been noted throughout the sequence.

Thick acid effusive rock interbeddings (up to 200 m in thickness) were encountered in the eastern part of the Delta at Letea (feldspathic porphyries) and Lacul Roşu North (quartziferous porphyries), as well as basic ones in its middle-western part, at Stipoc and Obretin (diabases and melaphyres) (Pl. -A, B). The age of the volcanics is still a problem.

Only some continental vegetal remains of gymnosperms and spores have been identified out of which a constant frequency seems to present the species *Taenisporites noviaulensis* (Leschik) and *Falcisporites zapfei* (Pot. & Klaus) Leschik, as well as some undeterminable specific types of the genera *Striatoabietites*, *Klausipollenites*, *Hemiapollenites* and *Alisporites*. All these are derived from Paleozoic types, but their association rather points to a Lower Triassic age.

The thickness variations of the red sedimentary, as well as its lack in the Snake Island (USSR), suggest an area of maximal deposit accumulation in the western half of the Delta, in front of the Sf. Gheorghe Fault.

In North Dobrogea, the red continental deposits, dated as Lower Triassic (Seissian) were only noticed in the Tulcea — Mahmudia area. Their thickness is comparatively unsignificant and obviously indicates the uplifted position of the respective area at this stratigraphic level too.

1.3. The Middle-Upper Triassic sedimentary cycle transgressively overlies the red sedimentary and consists of thick marine deposits, carbonate in the lower part and arenaceous at the top.

- The carbonate deposits are about 1000 m thick and consist of limestones at the base (350-450 m thick) and dolomites at the upper part (500-600 m thick) (Pl. -A, B).

The limestones are grey coloured, micro- and mesocrystalline, sometimes argillaceous. No determinable macrofossils have been registered and a poor foraminifera fauna has been solely identified at the base of the sequence (Lacul Rosu). It includes different forms of *Glomospirella*, Nodosinella, Spirillina, Agathamina, Meandrospira, suggesting an Anisian age. This age is equally substantiated by the continental palyno forms, present in all wells. Out of these, mention must be made of : Paravesicaspora planderoväe (V is cher), Protodiploxypinus doubingeri (K l a u s) W a rrington, Thiradispora crassa K l a u s, Alisporites graivogeli K l a u s.

The dolomites are micro- and macrocrystalline, whitish or yellowish grey-coloured and, occasionally, red-spotted. No macrofossils have been identified and the poor foraminifera content (forms of *Nodosaria*, *Dentalina*, *Placopsilius*, *Nodosinella*), as well as the palyno one (lesser than at the limestone level) are only suggesting a Middle Triassic age.

- The arenaceous deposits have been encountered only in the well Caraorman, where they are overlying the dolomites and consist of a thick sequence (450 m) of fine-coarse grey calcareous sandstones. A very rich palynological content of continental forms has been identified, out of which most frequent and characteristic are: Limbosporites lundbaldi Nellson, Ricisporites tuberculatus Lundbald, Ovalipollis ovalis Krutzsch, Chordosporites platysaccus Mädler, etc. The flora indicates a late Upper Triassic age with transition to the Rhaetian.

The Middle-Upper Triassic deposits in the Delta are strikingly different from those in North Dobrogea, both lithologically and paleontologically, and therefore their correlation is not possible yet.

1.4. The Jurassic sedimentary cycle overlies transgressively the abovementioned various Triassic complexes and consists of thick marine deposits, detrital at the base (Middle Jurassic) and carbonate at the upper part (Upper Jurassic). The sedimentation does not start, however, by the same deposits everywhere in the Delta.

In the Maliuc and Lacul Roşu wells, the dolomites and the Middle Triassic limestones, respectively, are overlain by grey-yellowish calcarenites (100-130 m thick) and microcrystalline limestones (about 70 m thick), including a continental palynoflora with Triassic and Jurassic forms. On this account and since they are overlain by the Bajocian, the respective deposits have been considered as late Liassic.

The Liassic limestones or various Triassic levels are covered by dark grey argillaceous limestones with interbedded thin, grey-blackish argillaceous shales. The thickness of the complex is of 20-25 m at Stipoc, Obretin, and Caraorman, of 150 m at Lacul Roşu and of 400 m in the Maliuc well. Here the limestones are predominantly lacustrine at the base (with numerous vegetal remains) and contain a palynoflora of Lower Bajocian age. Peculiar mention should be made of the species : *Chasma*tosporites apertus (R og a l s k a) N i l l s o n, Baculatisporites commannensis (C o o k s o n) Potonie, from the continental forms, and Nannoceratopsis gracilus A l b e r t i and Nannocodinium semitabulatum M o r g e n r o t h from the dinoflagellates.

The Bajocian and the Lower Triassic limestones (the Letea and Rosetti wells) are overlain by a thick sequence of dark grey-blackish argil-

4

laceous shales with pyrite concretions. Decimetric intercalations of grey fine sandstones and, occasionally, of limestones, marly limestones and sandy limestones are to be noted mainly at the upper part, where these are making up even thicker beds.

Bositra buchi (Roemer), Nuculana sp., Leda sp. have been identified, together with a rich microfauna and microflora, testifying to a comprehensive Bajocian-Bathonian age with extension into the Callovian-Lower Oxfordian.

The microfauna comprises numerous foraminifera of the Rhizaminidae, Reophacidae, Textulariidae, Lituolidae, Spirillinidae families and especially of the Ophtalmidiidae which sometimes occur exclusively (the Opthalmidium microfacies). Towards the upper part of the sequence, *Epistomina mosquensis* (U h l i g) has been identified (an index-fossil for the Callovian), while at its more calcareous top, frequent microfilaments have been noticed in the Caraorman well (in the Moesian Platform they characterize the Upper Callovian-Lower Oxfordian interval).

The palynoflora in the shales particularly consists of dinoflagellates (but also continental forms) out of which are mentioned : Nannoceratopsis spiculata Stover and Chytroeisphaeridia variabilis Pocock (usually present in the Middle-Lower Bajocian), Meiourogonyaulax valensii Sarjeant and Pareodinia ceratofora Deflandre (specific to the Bathonian), Ctenidodinium tenullum Deflandre, Scriniodinium dementii Pocock, Nannoceratopsis pellucida Deflandre, Meiourogonyaulax rioulti Sarjeant (defining the Upper Callovian-Lower Oxfordian interval).

The total thickness of the Middle Jurassic deposits widely varies between 500 m in the north (Stipoc) and over 1700 m in the south-west (Maliuc), the maximal thickness areas being located in front of the Sf. Gheorghe Fault (Plate -C).

- The upper part of the Jurassic consists of mesocrystalline grey or grey-yellowish limestones, alternating with marly limestones and marls. Remains of lamellibranchs, gastropoda and brachiopoda were identified, together with a relatively rich microfauna which proves a Malm age.

Out of foraminifera, peculiar attention should be paid to: Textularia jurassica (Gümbel), Bigenerina minima (Iovceva & Trifonova), Spirillina orbicula (Terquem & Berthelin), S. elongata (Bielecka & Pozariska), Paalzowella feifeli (Paalzow), Turispirillina polygyrata (Gümbel), T. amoena (Dain), etc., to which the holothurid species, Theelia heptalampra (Bartenstein) and Hemisphaeranis seiboldi (Schwager), should also be added. In the Lacul Roşu well, there have been identified microoncolites and Mercierella dacica (Dragastan), characteristic, in the Moesian Platform and the Carpathians, of the Upper Kimmeridgian-Lower Tithonian interval.

The palynoflora especially consists of dinoflagellates: Scriniodinium dictyotum (Cookson & Eisenack), Ctenidodinium panneum (Norris) Lentin & Williams, Cyptarcheodinium calcaratum (Deflandre) Gitmez.

The mentioned paleontological content has been found only in the lower part of the sequence, predominantly made of limestones; its upper

58

– Institutul Geologic al României

part is invaded by marls and marly limestones, and, according to certain palyno data, the latter seem to stand for an extension of the Tithonian into the Portlandian facies.

The Upper Jurassic sedimentary develops over an area somewhat smaller than that of Middle Jurassic, but the areas of maximal deposits thickness (of about 1000 m or even thicker) also lie in front of the Sf. Gheorghe Fault (Plate -C).

In North Dobrogea, the Jurassic is only represented by thin Liassic deposits and it is obvious that in this time it roughly acted as an uplifted area. Some data, however, suggest a southern invasion of the Jurassic over the Sf. Gheorghe Fault, along the border of the Black Sea.

1.5. The Lower Cretaceous sedimentary cycle overlies the Upper or Middle Jurassic and consists of red continental deposits, clays, marls, sands and sandstones with thin anhydrite interbeddings, especially in the Stipoc area.

The thickness of the deposits is highly variable (Plate -D), being greater at Stipoc-Rosetti and Lacul Roşu (over 500 m). In this last area a palyno association of spores-pollen and subordinately of dinoflagellates has been identified, pointing to a Lower Cretaceous age (previously, these deposits have been considered as Upper Jurassic -L it e an u E. & Pricăjan A., 1963, etc.). Out of these forms mention must be made of: Circulina parva (Brenner), Classopolis clossoides (Pfulg), Broomea jaegeri (Alberti), Dingodinium cerviculum (Cookson & Eisenack).

No such red deposits are present in North Dobrogea, but from the Lacul Roşu area they seem to expand southwards over the Sf. Gheorghe Fault, covering the eastward plunging of the Mahmudia Uplift.

1.6. The Sarmatian-Pliocene sedimentary cycle transgressively overlies the various Mesozoic complexes and roughly consists of alternating marks and sands. Detailed data on this sequence, of about 200 - 350 m thick, have been furnished by Liteanu and Pricăjan (1963).

2. Evolutionary and Structural Considerations

The Pre-Dobrogean Depression, of which the Danube Delta is a part, has been regarded as a Jurassic depression, which came into being after the North Dobrogean old Kimmerian foldings. It, however, settled down on an area whose depressionary character was inherited at least from the first stage of the Hercynian foldings (old Bretonic), a long time, between the Devonian and Upper Triassic, the area acted irrespective of North Dobrogea and in this respect, the doubts expressed by certain researchers as to its foredeep character are partly justified.

In the south, the depression is bordered by the Sf. Gheorghe Fault, a deep fracture which acted as far as the Paleozoic, if not before. Along the fault, the North Dobrogean sedimentary overthrusts the Delta one, but the thrust amplitude has not been defined yet.

According to certain researchers, the Sf. Gheorghe Fault continues westwards along the Galați-Tecuci line (Mutihac and Ionesi

Institutul Geologic al României

I. PATRUT et al.

1973), but it is much more probable that it crosses the Danube, merging into the Ismail-Cahul line (USSR), equally regarded as the south-eastern margin of the Pre-Dobrogean Depression (D r u m e a et al., 1959). Eastwards, the fault continues into the marine realm.

The northern depression margin lies in the USSR, on the Kangaz-Glubkoe line (Drumea et al., 1959) which also seems to correspond to a deep fracture. This line extends into the Black Sea, west of the Snake Island.

During the Paleozoic and Lower Triassic, the area of maximal sedimentation seems to have been located north of the Sulina branch of the Danube, with extension into the USSR, but, in the Middle Triassic, it moved into the southern part of the Delta, between the Sulina and the Sf. Gheorghe branches of the Danube (Pl.-A, B).

During the Jurassic, the Depression extended progressively northwards, overpassing the Middle Triassic border, but its depocenter still remains in front of the Sf. Gheorghe Fault (Pl. -A, C).

The thickness variations of the Middle and Upper Jurassic sedimentary (Pl. - C, D) show not only a striking asymmetry of the depression at these stratigraphic levels (a very large northern flank and an extremely narrow southern one), but also a deep geological condition in the Stipoc-Caraorman area, which has strangled the depression, separating two depocenters; one in the west, at Maliuc, where the Middle Jurassic is widely developed with continuity in the USSR (at Bolgrad), and another one in the east, at Sulina, with continuity into the Black Sea realm.

The deep geological conditions having generated the ridge separating these depocenters have not been defined yet, but it lies in the southern sunken extremity of a promontory in the Letea-Stipoc area and could correspond to a deep fault system along which basic effusive events have taken place (Obretin and Caraorman, Pl. - A, B).

At the end of the Jurassic, the Danube Delta was uplifted, without being folded and attached to the North-Dobrogean dryland. The old movement tendencies of sinking were only resumed for a short time in the Lower Cretaceous and then in the Upper Miocene and Pliocene.

The Danube Delta succession of deposits is very thick and, generally, lithologically different from the North Dobrogean one; many sequences in the Delta are lacking in Dobrogea and the other way round, all these remarkable differences took place over a very short distance and are rather difficult to explain. An ample thrusting of the North Dobrogean sedimentary over the Delta one along the Sf. Gheorghe Fault could offer a more convenient explanation, but there are no positive data to prove such a thrusting.

Inferences

The Danube Delta is a part of the Pre-Dobrogean Depression and comprises a thick sequence of deposits, carbonate and detrital, from Paleozoic to Quaternary, disposed in major sedimentary cycles, separated by stratigraphical gaps.

The red continental Lower Triassic deposits, as well as the detrital marine Jurassic ones, are amply developed throughout the Delta, but

60

G

the carbonate deposits of Middle Triassic and Upper Jurassic are only developed in front of the Sf. Gheorghe Fault, which separates the Delta from the North-Dobrogean Orogene.

In the red continental Lower Triassic, there are to be noted interbeddings of volcanics — acid (porphyries) and basic (diabases, melaphyres) but their age is still a problem.

The Delta sedimentary is very thick and to a great extent lithologically different from the North Dobrogean one.

REFERENCES

- Bogaet T. A., Boiciuk V. G., Gurevici I. K., Polihtovici M. B., Stoliar N. L. (1976) Novie dannie o gheologhicescom stroeni o-va zmeinogo - Sovetskaia Gheologhiia nr. 6.
- Drumea A. V., Ivanciuc K. P., Kanikovski I. V., Negadaev-Niconov N. K. (1969) Tectoniceskoe raionirovanie Moldavski S.S.R. i jugozapadnoi Odeskoi Ohlasti. Mold. Fil. A. Nauk. SSR nr. 12 (66).
- Kaptan H. V., Polev V. P., Saforov I. E. (1963) Novie dannie o verhnepaleozoiskih otlajeniah v. Moldavii. Dockl. Ac. Nauk SSSR T. 150 nr. 4 (pg. 882 - 884).
- Liteanu E., Pricăjan A. (1963) Alcătuirea geologică a Deltei Dunării. Com. Geol. St. tehn. econ. Seria E, 6, București.
- Mutihac V. (1964) Zona Tulcea și poziția acesteia în cadrul structural al Dobrogei. An. Com. Geol. Rom. XXXIV/1-București.

- Ionesi I. (1973) Geologia Románici. Ed. Tehnica. București.

- PătruțI., Paraschiv C., Dăncț Th., Dăneț N., Balteș N. (1976) Report, the archives of the Ministry of Petroleum, Bucharest.
- Safarov I. E., Kaptan H. V. (1964) Novie dannie o kammennugolnik otlajeniah V. Moldavian. Docke Ac. Nauk SSSR T. 157 nr. 6 (pag. 1366 - 1368).
- Sliusar S. B. (1971) Jurskoe otlojenia severo-zapadnogo Pricernomorie. Ac. Nauk. Moldavskoi SSSR -Kişinev.

DISCUSSIONS

R. Cădere: This very interesting paper on the stratigraphy and tectonics of the Danube Delta is of a great importance for the hydrological interpretation of the lack of drinking water in this zone.

Likewise, the stratigraphy of the Delta is completed by a Quaternary rich in alluvia with significant contents in titaniferous ores resulting from the deposition of heavy alluvia, drifted by the Danube and sedimented here and in the zones of overflow into the sea. It will constitute an important ore deposit for the titanium mining in the future.

Institutul Geologic al României

I. PATRUT et al. The Geological Constitution of the Danube Delta.

Institutul Geologic al României

METAMORPHOSED PALEOZOIC AND MESOZOIC FORMATIONS OF THE MEHEDINTI-RETEZAT UNIT¹

BY

ION STĂNOIU², ADINA VISARION²

Within the Danubian area ("Danubian Autochthon") several Alpine (Laramian) tectonic units are distinguished: Arjana Nappe (C o d a rc e a , 1940), Presacina Nappe (S t ă n o i u, 1973 a), etc. The shear plane of the Presacina Nappe divides the Danubian area into two important subdivisions: the internal part (internal Danubian area) and the external part (external Danubian area). The external part of the Danubian area has been called by S t ă n o i u (1973 a) the Mehedinți-Retezat Unit, by P o p (1973) the Mehedinți Threshold, by K r ä u t n e r et al. (1978) the Parîng Retezat Unit, and by K r ä u t n e r et al. (1981) the Lower Danubian Unit. The Arjana Nappe in the Țarcu Mts is also known under the name of the Căleanu Duplicature (M o r a r i u, M o r a r i u, 1981) or the Feneș Unit (K r ä u t n e r et al., 1981). The Presacina Nappe has also been called the Poiana Mărului Unit (K r ä u t n e r et al., 1978; K r ä u t n e r et al., 1981).

M a n o l e s c u (1932, 1937 a, 1937 b, 1940) and P a l i u c (1937), who founded the lithostratigraphy of the metamorphosed Paleozoic and Mesozoic formations, referred them mainly to the Mesozoic. After the year 1953, all the rocks of the above-mentioned formations have been assigned to the Paleozoic, being included into the Tulişa Series (P a v e - l e s c u, 1953). Mention should be made of P a v e l e s c u and R ă i - l e a n u 's paper (1963) in which the unconformity between the limestones and basal conglomerates of the Tulişa Series is pointed out. Recently, important progresses have been achieved due to the papers of S t ă - n o i u (1971, 1972, 1973 b, 1976, 1980 a, 1980 b), G h e r a s i et al., (1968, 1973, 1975), N ă s t ă s e a n u (1973, 1974, 1975), P o p (in P a v e - l e s c u et al., 1974), S o l o m o n, V i s a r i o n (1974), S o l o m o n et al. (1976), S c h u s t er (1980, in Nă s t ă s e a n u et al., 1974).

As the Paleozoic formations of the external part of the Danubian area have already been presented by one of the authors of this paper in

Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981, September 8 - 13, Bucharest, Romania.

² Institute of Geology and Geophysics, str. Caransebes 1, 78344 Bucharest, Romania.

the Guidebook to Excursion A_1 of the 12th Congress of the CBGA, we shall not deal with them any more.

The metamorphosed Paleozoic and Mesozoic formations of the Mehedinți-Retezat Unit may be referred to the Jieț Supergroup. The Paleozoic formations constitute the Tulișa Group and the Mesozoic formations make up the Schela Group.

Cambrian

A lithostratigraphic entity with limestones (carbonate complex) has been delimited by Bercia, Bercia (1963) in the Mehedinți Mts, at the upper part of the Lainici-Păius Group. This lithostratigraphic entity has also been found in the Vilcan, Retezat and Parîng mountains, almost always immediately under the Paleozoic formations. Lithologic and palynologic evidence (Acanthodiacrodium sp., Cymatiosphaera sp., Baltisphaeridium sp.) seems to indicate that at least some of the rocks of this entity belong to the Cambrian.

The Tulișa Group

Ordovician-Silurian(?)

The Valea Izvorului Formation (S t ă n o i u , 1972), unconformable, appears in the Mehedinți Mts. It is represented by a quartzitic lower member (cca 10 – 60 m thick), consisting of white quartzites, often with interbeddings of chlorite-sericite schists or sericito-chlorite schists, and a schistous upper member (300 m thick), constituted of chlorite-sericite or sericito-chlorite \pm graphite greenschists. The rocks of the Valea Izvorului Formations in the Vilcan, Retezat and Paring mountains have been temporarily separated by S t ă n o i u (1976) under the name of the Coarnele Formation.

From the Valea Izvorului Formation Stănoiu (1971, 1972, 1973 b) and Iliescu (in Stănoiu, Iliescu, 1976) reported corals, bryozoa, brachiopods and trilobites (*Caleidocrinus artifex*, *Flexi*colymene sp., *Encrinurus* or *Cromus* sp.) beside acritarchs, chitinozoa, scolecodontes and microspores.

Acritarchs (Baltisphaeridium sp., B. brevispinosum Eis., Priscogalea simplex Dunff., Acanthodiacrodium cf. achrasi Martin, Veryhachium lairdi (Dcfl.) Deff., Multiplicisphaeridium sp. cf., M. varians, St. Will)., chitinozoa (Lagenochtina, Conochitina sp.), and scolecodontes have been reported from the Coarnele Formation.

Devonian-Lower Carboniferous

The Tusu Formation (S t ă n o i u, 1976) — unconformable, u p to 800 m thick — is apt to be found in the Vilcan, Retezat and Mehedinți mountains. It is represented by graphitic schists, chlorito-epidotic schists, chloritoid schists, lenses of quartzites, metapsamites, green metapsamites, intraformational metabreccias, mostly acid-intermediary metavolcanic conodont bodies.

64

- Institutul Geologic al României

The paragenesis of the Tusu Formation is represented by quartz, calcite, albite, microcline, sericite, chlorite, chloritoid, epidote, actinote, biotite, muscovite, stilpnomelane, graphite.

From the Tusu Formation (Upper Devonian or more recently) A dina Visarion (in Solomon et al., 1976) and Violeta Iliescu (in Stănoiu, Iliescu, 1976) reported a palynologic assemblage and Stănoiu (1980 b) pointed out the presence of macroflora remains (*Palaeophyllales* group, *Neuropteris* sp., etc.). The palynological assemblage is represented by *Auroraspora* sp., *Samarisporites* sp., *Hymenozonotriles* sp., *Archaeozonotriletes vasjamicus* Cibrik, *Endoculeospora* sp., *Brochotriletes triangularis* Cibrik. The precise age will be obtained only after having finished the paleontological studies.

The Sgura Formation (Stănoiu, in Kräutner et al., 1981) — unconformable, cca 600 - 700 m thick — is represented by metapsamites, metasiltites and metapelites with a lot of plant remains. It is admitted (Stănoiu, 1976) that there is a facial lateral transition between the rocks of the Tusu Formation and those of the Sgura Formation.

The mineralogical paragenesis of the Tusu and Sgura formations is represented by quartz, calcite, albite, microcline, sericite, chloritoid, epidote, actinote, biotite, muscovite, stilpnomelane, graphite.

The Vidra Formation (C o d a r c e a, G h e r a s i, 1959) — cca 700 m thick — appears in the Petreanu, Țarcu, and Retezat mountains. Here, the overthrust plane of the Presacina Nappe overlies a homoclinal succession of metapsephites, black (coarse) metapsamites and metapelites and crystalline limestones with a mineralogical paragenesis consisting of quartz, albite, sericite, chloritoid, epidote, albite, graphite, biotite (G h e r a s i et al., 1968).

From the Vidra Formation (Devonian) there have been reported remains of crinoids (G herasi et al., 1968), *Michelinoceras* sp. (Magdalena Iordan — in Gherasi et al., 1975) and a palynologic assemblage (Adina Visarion — in Gherasi et al., 1975) similar to that found in the Tusu Formation. The lithologic aspect points to the Mesozoic age.

The Latorita Formation (S c h u s t e r, in N \check{a} s t \check{a} s e a n u et al., 1974) is apt to be found only in the Paring Mts. West of the Coasta lui Rus it consists of a calcareous lower member (cca 100 m thick) and a schistous upper member (300 - 500 m thick), represented by chloritoepidote greenschists in association with calcareous shales and serpentinites. East of Coasta lui Rus, the Latorita Formation becomes more heterogeneous (including metapsephites, metapsamites, metaarkoses, metagrauwackes, albite-sericite-quartz-epidote schists, sericito-graphite schists, sericite schists, crystalline limestones, metabasites, serpentinites, metaquartz-keratophyres, and rodingites); it shows numerous lateral facies variations, becomes thicker (up to 1000 m), and the basal limestones branch out at several levels.

The age of the Latorita Formation is confined to the Ordovician-Lower Carboniferous interval.

The Oslea Formation s.s. - cca 400 m thick, unconformable - - occurs in the Vilcan and Retezat mountains. The upper part of the

5 - c. 50 51

Oslea Formation s.l. has been attributed to the Mesozoic (N ă s t ă s e a - n u, 1973). The Oslea Formation s.s. has been divided by S t ă n o i u (1980 a) into a metapsamitic lower member, a carbonatic middle member, and a metapelitic (schistous-graphitous) upper member. The paragenesis of the Oslea Formation is represented by quartz, calcite, dolomite, micrite, chlorite, biotite, stilpnomelane, epidote, actinote.

A palynologic assemblage, represented by Convolutispora sp., Apiculatisporites sp., Cristatisporites sp., Waltzispora sp., Triquitrites sp., Murospora kosankei Som., Knoxisporites literatus (Waltz) Playford, Lophozonotriletes cristifer (Luber) Kedo, which would indicate the Carboniferous (Visean-Namurian?), has been pointed out at the lower part of the metapelitic member.

The Hereynian Molasse

Middle Carboniferous-Permian

Semaka (1963) reported "remains of Annularia stellata Schloth., Calamites (Calamitina) undulatus Sternb., Precopteris feminaeformis Schloth. and Stigmaria? sp. from the schists of the Schela Formation of Vai de Ei and remains of Sphaenophyllum longifolium Germar, pointing to the Upper Carboniferous, in the Rafailă chloritoid schists.

In the Retezat Mts, slightly metamorphosed, red conglomerates, assigned to the Permian, are overlain by the Mesozoic rocks and overlie the crystalline schists. The Permian might also include the Piatra Cloșani metapsephites (S tănoiu, 1973), found in the Cerna Mts and on the southern slope of the Vilcan Mts.

The rocks of the Tulişa Group, belonging to the Mehedinți-Retezat Unit, have undergone a Hercynian, regional metamorphism in the greenschist facies, quartz-albite-chlorite subfacies, between the contact area with the prehnite-pumpellyte facies (in the outer parts) and the contact area with the quartz-albite-biotite subfacies (in the inner parts). The intensity of the metamorphism processes increased from the exterior to the interior (S t ă n o i u, 1973; 1980 a); an obvious difference may be observed as regards the intensity of the deformations, blastesis, and the orientation of the minerals in the Paleozoic formations of the Mehedinți Plateau as compared to the synchronous formations in the Retezat Mts and the northern part of the Vilcan and Paring mountains. Pyrophyllite occurs in the Tusu Formation (Poiana Mică Formation) in the Mehedinți Mts.

The Schela Group

The Mesozoic rocks of the Mehedinți-Retezat Unit may be grouped into four main formations: Baia de Aramă Formation (Semaka, 1963) — Liassic; Poiana Mare Formation (calcareous formation) — Middle Jurassic-Lower Cretaceous; Nadanova Formation — Cenomanian-Lower Turonian; Mehedinți Formation (of olistostrome type) — Middle Turonian? — Senonian.

66
The Schela "Formation" (M r a z e k, 1898) in the southern slope of the Vilcan Mts is mostly constituted of rocks (metapsamites, metapelites and metapsephites) with Liassic plants within which chloritoid, pyrophyllite (80%), chlorite, sericite, prehnite, graphite (as powder and anthracite strips) and illite (P a l i u c, 1972; A n t o n, 1974) are to be found. These rocks point out (G u r ă u, S e r b ă n e s c u, 1972) blastesis, deformations (boudinages, microfolds, S₁ foliation) and mineral trending. All this points to low-grade metamorphism (at the level of the entrance domain in the greenschists). The lithology, rendered evident particularly by drillings, indicates that the upper part of the Schela "Formation" might be represented by the Mehedinti Formation.

On the northern side of the Vilcan and Paring mountains, Stänoiu (1980 a) has separated provisionally the Rastovanu Formation - unconformable, cca 800 m thick - represented by metapsamites, metapelites and metapsamites with Pterophyllum sp., Cladophlebis aldanensis Vochraneev, assigned to the Liassic, possibly to the Upper Carboniferous, too. In this formation, beside Liassic spores, Upper Carboniferous spores are found in places. The Răstovanu Formation is unconformably overlain by the Nadanova Formation (sericitous and calcareous grey metapelites) with lamellibranchs, gastropods, belemnites and ammonites (Stänoiu, 1980 a) east of the Jiu Passage (Pop in Pavelescu et al., 1975). on the Baleia Valley and south of the Cîmpu lui Neag locality. This formation is unconformably overlapped by the rocks of the Mehedinti Formation (Codarcea, 1941; Solomon, 1978; Pop, in Pavelescu et al., 1975; Năstăseanu and Stănoiu in Stan et al., 1979; Năstăseanu, 1980; Stănoiu, 1980 a), represented by the lower member (cca 300 m thick) with limestone olistoliths and the upper member (cca 200 m thick) with dolerite-basalt olistoliths, serpentinites and rocks of the Sinaia and Azuga beds type. Solomon et al. (1976) have separated a part of the rocks of the Mehedinți Formation in the north-eastern part of the Vîlcan Mts under the name of the Petrosani Formation. From the "lenses" (=olistoliths) of limestones associated to the Paroseni Formation, Magdalena Ior d a n reported coral remains belonging to the group Thamnasterida, Phacelostilophylum sp., Cyatocoenia alpina (Gimbel) (Ronoeevicz), crinoids, bivalves, brachiopods. In the same formation, Adina Visarion has identified pollen of Pinaceae and Ginkgocycadophytus sp., beside spores (Cyathidites sp., Gleicheniidites or Toroisporites sp. and Dictuophyllidites sp.). On the basis of the mentioned fossils the Paroseni Formation has been assigned to the Rheto-Liassic. Cyathidites sp., Classopollis sp., Piceapollenites sp., Deltoidospora sp., and Toroisporites sp. have also been reported from the Răstovanu and Mehedinți formations.

The intense deformations (a marked S_1 foliation, an obvious lineation mostly due to the crenulation microfolds and the intersection of S_0 planes — bedding — with S_1 planes, intense boudinages, b_1 folds beside crenulation microfolds and b_2 incipient folds — almost perpendicular to b_1 — which affects also S_1 planes), obvious blastesis, well-marked trending of the minerals with tabular habitus and the mineralogical paragenesis (quartz, calcite, albite, sericite, chlorite, chloritoid, pyrophyllite, prehnite, pumpellyte, paragonite and graphite—anthracite with over 90 %

graphite) prove that the rocks of the Răstovanu and Mehedinți³ formations in the northern flank of the Vilcan and Paring mountains were metamorphosed in the uppermost part of the greenschist facies.

On the northern slope of the Retezat Mts, a Mesozoic lithostratigraphic entity (Mehedinți Formation and possibly the Baia de Aramă Formation) appears immediately under the overthrust plane of the Presacina Nappe. This entity is represented by quartz metapsamites, metasiltites and black (graphitous) metapelites with lenses (olistoliths) of limestones and serpentinites, partly included into the Rîuşoru Formation.

North of the Godeanu Mts, in the Lăpușnic Valley basin, there have been described Mesozoic (Schafarzik, 1898; Streckeisen, 1934; Gherasi et al., 1973; Pop, 1964) or Paleozoic rocks (Morar i u, 1972), represented by metaarkoses (Liassic) at the lower part, followed by calcareous metapsamites (Dogger), crystalline limestones (Upper Jurassic-Lower Cretaceous), schists with "lenses" (olistoliths) of limestones (lower member of the Mehedinti Formation) and schists with huge blocks - gravity sliding "lambeaux" consisting of crystalline schists associated with Permian (?) red conglomerates (upper member of the Mehedinți Formation). On the Bran and Lăpusnic valleys, from this succession Adina Visarion reported (in Gherasi et al., 1973) a Mesozoic (Jurassic) spore-pollen assemblage represented by Cyathidites sp., Deltoidospora juncta (Kr. - Mz) Singh, Ovalipollis sp., Ginkgocycadophitus nitidus (Balme) Dettman, Bennettitinaepolenites sp. The mineralogic paragenesis (sericite, chlorite), the intense deformations (highly microfolded rocks, marked foliation and lineation, boudinages), the trending of minerals with tabular habitus, intense recrystallizations (calcite inclusions in quartz) point to changes at the level of the greenschist facies.

N-E, E and S-E of the crystalline of the Sebes-Lotru Group in the Godeanu Mts, the recrystallized calcareous formation (G h e r a s i, 1937; Pop, 1964) and the Nadanova Formation are unconformably overlain by the lower member of the Mehedinti Formation, consisting of a metamorphosed clayey-gritty olistostrome. The upper member of the Mehedinți Formation is represented, at the lower part, by metaconglomerates, metabreccias and sericite \pm chlorite schists with elements and blocks of crystalline schists, rocks of the Nadanova Formation and Permian (?) red conglomerates, followed by sericite \pm chlorite schists and breccias with elements and blocks of crystalline schists. In the middle part of this succession and especially at the terminal part one may observe blocks, often huge, of crystalline schists associated with Permian (?) red conglomerates. The intense deformations (microfolds, lineations, boudinages, foliation), the blastesis, the trending of the minerals with tabular habitus, the mineralogical paragenesis (chlorite, sericite) point out a metamorphism at the greenschist level.

Ur c a n (1977) reported pyrophyllite, sericite, chlorite and ? chloritoid (small crystals) from the rocks of the Baia de Aramă Formation in the Mehedinți Mts, between the Virful lui Stan Summit and the Motru Sec Valley. Deformations (boudinages, microfolds, lineations, S_1 foliation), blastesis, mineral trending, mineralogical paragenesis and the alteration

– Institutul Geologic al României

stage of the coal matter (the stage of transition from anthracite to graphite) indicate metamorphism at the level of the transition domain from the prehnite-pumpellyte facies to the greenschist facies, less intensive than the metamorphism of the Mesozoic rocks described above.

Almost all limestones of the calcareous formation in the Mehedinți-Retezat Unit are intensely recrystallized.

The textural and structural characters (foliation, satinated aspect, incipient blastesis — the frequency of the so-called pressure shadows, beginning of trending of the minerals with a tabular habitus and the mineralogical paragenesis (chlorite + micaceous minerals: illite + sericite) indicate that the rocks of the Mehedinți Formation in the Mehedinți Plateau and the southern side of the Vîlcan and Parîng mountains have also undergone intense alteration processes of low-grade metamorphism (probably the prehnite-pumpellyte facies).

It is only in the rocks occurring in the outermost parts (SE of the Baia de Aramă tectonic alignment) that the sedimentary characters have not been altered.

One may infer (S t ă n o i u, 1973 a, 1980 a) that all the Mesozoic rocks — in almost the whole Mehedinți-Retezat Unit — have undergone a low-grade Alpine (Laramian) regional metamorphism and the intensity of these processes has increased from the inner towards the outer parts. The Alpine metamorphism has been felt in the formations of the Variscan and pre-Variscan crystalline formations (more intensely metamorphosed) by the effects of retrograde metamorphism. Many of the plicative (microfolds, large regional folds, etc.) and ruptural deformations in the pre-Mesozoic crystalline schists are the result of the Alpine orogenesis.

³ The rocks of this formation have also been included into the Tulișa Series (Pavelescu, 1953), the Schela Formation (Manolescu, 1937; Paliuc, 1937) and the Vidruța Formation (Schuster, 1980).

REFERENCES

Gherasi N. (1937) Etude géologique et pétrographique dans les Monts Godeanu et Țarcu. An. Inst. geol. Rom., XXVIII, București.

- , Zimmermann V., Zimmermann P. (1968) Structura și petrografia șisturilor cristaline din partea de sud a munților Țarcu (Banatul de est). D. S. Inst. geol., LIV/1, București.
- , Visarion A., Zimmermann P. (1973) Considerații asupra vîrstei unor șisturi cristaline și depozite sedimentare în autohtonul danubian, situate la marginea de nord a munților Godeanu (Carpații Meridionali). Stud. cerc. geol. geof. geogr., ser. Geol., 18/2, Ed. Acad. RSR, București.
- , Visarion A. Zimmermann P., Iordan M. (1975) Asupra vîrstei paleozoice (Devonian) a formațiunii de Vidra din partea de nord a munților Țarcu (Carpații Meridionali). D.S. Inst. geol. geofiz., LXI/4, 3 - 9, București.

- Kräutner H., Berza T., Stänoiu I., Iancu V. (1981) Metamorphosed Paleozoic in the South Carpathians and its Relations with the Pre-Paleozoic Basement. Guide to Excursion A₁, Carpatho-Balkan Geol. Assoc., XII Congr., Bucharest-Romania, 1981.
- Manolescu G. (1940) Observations géologique dans le basin superieur des valées de la Cerna et du Jiul Românesc. C. R. Inst. geol. Rom., XXIV, București.
 - (1932) Das Atler der Schela formation. Bul. Soc. Rom. Geol., I, București.
 - (1937) Etude géologique et pétrographique dans les Monts Vilcan. An. Inst. geol. Rom. XVIII, Bucureşti.
- Morariu D., Morariu A. (1982) A new structural model of the Tarcu Riul Mare Region (Tarcu, Petreanu, Godeanu Massifs). D. S. Inst. geol., geofiz. LXVII/5, București.
- Năstăseanu S. (1973) Notă preliminară privind Paleozoicul anchimetamorfic (formațiunea de Oslea) din Carpații Meridionali, D. S. Inst. geol., LIX/4, Bucuresti.
- Paliuc G. (1937) Etude géologique et pétrographique du Massif Paring et des Munții Cimpii (Carpates Meridionales). An. Insl. geol. XVIII, București.
- Pavelescu L. (1953) Studiul geologic și petrografic al regiunii centrale și de sud-est a munților Retezatului. An. Insl. geol. XXV, București.
 - , Răileanu G. (1963) Considerații generale asupra virstei șisturilor cristaline din autohtonul Carpaților Meridionali. Asoc. Geol. Carpato-Balk., Congr. V, 1961, II, București.
- Pop G. (1964) Contribuții la cunoașterea Paleozoicului și Mezozoicului din partea de est și nord-est a masivului Godeanu (Carpații Meridionali). Rev. geol. geogr., ser. Geol., 8, 1 - 2, București.
- Schuster A. (1980) Geologische und petrographische Untersungen im Danubirum der Südkarpaten, Paring-Gebirge, Rūmänien Dissertation zur Erlangung des Grades eines-Doktors der Natur bissensemschaften. Fakultät für Natur-und Geowissenschaften der Technischen Universitat Claustal.
- Semaka A. (1963) Despre virsta formațiunii de Schela. Asoc. Geol. Carp. Balc., Congr. V, II/2, București.
- Solomon I., Visarion A., Iordan M. (1976) Considerații asupra formațiunilor cristalofiliene și anchimetamorfice din munții Vilcan și munții Retezat (Carpații Meridionali). D. S. Inst. geol. geofiz., LXII/5, București.
- Stănoiu I. (1971) Notă preliminară asupra prezenței Silurianului fosilifer în Carpații Meridionali. D. S. Insl. geol., LVII, 5 – 15, București.
 - (1973) Zona Mehedinți-Retezat o unitate paleogeografică și tectonică distinctă a Carpaților Meridionali. D. S. Inst. geol. LIX/5, București.
 - (1976) Contribuții la stratigrafia formațiunilor paleozoice din versantul nordic al munților Vilcan (Carpații Meridionali). D. S. Inst. geol., geofiz., LXII/5, 220 - 256, București.
 - (1982) Prezența fosilelor mezozoice și metaantracitul în cadrul șisturilor cristaline ale "grupului Tulișa" din versantul nordic al munților Vilcan și Paring. D. S. Insl. geol. geofiz. LXVII/3, Bucharest.
 - (1982) Prezența unei asociații macrofloristice în cadrul șisturilor cristaline ale formațiunii de Tusu (autohtonul danubian). D. S. Insl. geol. geofiz. LXVII/3, Bucharest.

CORRÉLATION PALYNOLOGIQUE DU CRETACE TERMINAL DU SUD-EST DES MONTS METALIFERI ET DES DÉPRESSIONS DE HATEG ET DE RUSCA MONTANĂ¹

PAR

EMANUEL ANTONESCU², DENISA LUPU², MARCEL LUPU²

A) Introduction

Des formations continentales comprenant des dépôts détritiques, parfois rouge-violacés, avec de restes de dinosauriens, à intercalations de roches volcanoclastiques et des charbons, existent au sud-ouest de la Roumanie. Ces formations ont été attribuées au Maestrichtien, au Danien, à l'Eocène supérieur-Oligocène ou à l'Aquitanien. Nous avons entrepris des recherches afin de préciser l'âge et de corréler ces dépôts au moyen de la microflore et des associations des gastropodes.

B) Cadre geologique

a)" Sud-est des Monts Metaliferi

Au sud-est des Monts Metaliferi, dans la rive droite de la rivière Mures, dans la région de la vallée Pîclişa, aux environs de la ville d'Alba-Iulia, une formation détritique, rouge-violacée repose en continuité de sedimentation sur la formation molassique marine d'âge campanien supérieur-maestrichtien inférieur. Celle-ci a été attribuée soit au Maestrichtien (D i m i a n, P o p a - D i m i a n, 1964; T o m e s c u ct al., 1969), soit à l'Oligocène (B l e a h u, D i m i a n, 1967). A n t o n e s c u (1973) identifie une association palynologique à *Pseudopapilopollis praesubher*cynicus (G ó c z á n, 1967, d'âge maestrichtien moyen et supérieur, commune aux dépôts détritiques rouges de Pîclişa et aux dépôts à charbons de Rusca Montană, corrélable avec celle du Maestrichtien supérieur d'Hongrie.

¹ Note présentée au 12 ême Congrès de l'Association Géologique Carpatho-Balkanique, 8 – 13 septembre 1981, Bucarest, Roumanie.

² Institut de Géologie et Géophysique, str. Caransebeş 1, 78344 Bucarest, Roumanie.

b) Dépression de Hateg

Dans la depression de Hateg une formation detritique, continentale, puissante d'environ 1500 metres (Dincă, Tocorjescu, Stilla, 1972) repose sur un facies de flysch dont la partie superieure est d'âge campanien superieur-maestrichtien inférieur (Pop, Neagu, Szász, 1972). Dans la partie centrale-ouest du bassin, la série continentale commence par un facies pyroclastique suivi par un facies fluvio-lacustre qui contient des restes de dinosauriens à la partie inférieure (N o p c s a, 1902; selon Dincă et al., 1972). L'âge des depots compris entre le facies de flysch et les premiers dépôts à faune marine du Miocène de la partie centrale-ouest de la dépression a été attribuée soit au Danien (Nopcsa, 1905; Laufer, 1925; Mamulea, 1953; Dräghindă, Mihalache Paula, 1963; selon Pop, Neagu, Szász, 1972) soit au Maestrichtien (Pop, 1971; selon Pop et al., 1972; Pop et al., 1972; Dincă et al., 1972). Rădulescu, Iliescu, Iliescu (1976) considerent la partie inférieure du facies fluvio-lacustre à dinosauriens d'âge éocène superieur-oligocène inférieur (les dinosauriens étant remaniés), et la partie supérieure de la même formation à dépôts détritiques rouges des environs de Ciula d'âge oligocene étant comparée avec les dépôts sous facies similaire oligocène de l'est de la dépression. Nous considérons que dans la partie centrale-ouest de la depression de Hateg il y a deux formations; 1) la formation de Densus à roches volcanoclastiques, inférieure, d'âge maestrichtien selon la flore (Baikovskaia, 1956; selon Märgärit, Märgärit, 1967), qui repose sur le flysch sénonien et, 2) la formation de Ciula, supérieure, comprenant, les dépôts détritiques rouge violacé à dinosauriens et les dépôts sous le même faciès, qui au sud de Ciula Mică comportent une intercalation charbonneuse. Au-dessus de la formation de Ciula suit avec discordance le Miocène marin, l'âge de la formation de Ciula sera discuté plus-bas.

c) Dépression de Rusca Montană

Dans cette région, au-dessus du faciès de flysch d'âge santoniencampanien (D i n c ă, 1977), suit le faciès molassique à roches volcanoclastiques et intercalations charbonneuses. D i n c ă (1977) décèle dans cette molasse un horizon détritique, inférieur, et le second, supérieur, piroclastique, qui dans l'est de la dépression comporte des charbons à la partie supérieure. D i n c ă et al. (1972), et D i n c ă (1977) attribuent au Maestrichtien les horizons détritiques et piroclastiques de Rusca Montană.

C) Corrélation au moyen de la microflore et des gastropodes du Maestrichtien continental du sud-ouest de la Roumanie

a) Gastropodes

Les dépôts détritiques continentaux à dinosauriens de la formation de Ciula ont fourni aussi des associations de gastropodes dulcicoles ou terrestres. Les spécimens appartenant aux familles Pomatiasidae, Anadromidae, Viviparidae, Planorbidae et Streptaxidae ont été prélevés

🕌 Institutul Geologic al României

des localités Sînpetru et Vălioara. L'association des espèces Anastomopsis rotellaris (M a t h .), Bauxia bulimoides (M a t h .), Bauxia sp., Strophomella reussi (S t o l.), Helix sp., Vidadiella darderi (V i d a l), Gastrobulimus munieri (H a n t k e n), Bauxia aff. bulimoides (M a t h.), Gastrobulimus sp., Lychnis sp., ? Paludinopsis sp., Planorbis sp., indiquent le Maestrichtien supérieur; des associations similaires ont été décrites dans le Garoumien français aussi bien que dans le Crétace terminal d'Espagne, Iles Baléares, Portugal (W e n z, 1939, 1959, 1960).

b) Microflore

3

1. Provenance de la microflore. Au sud-est des Monts Metaliferi, dans la vallée de Pîclișa nous avons identifié un second niveau palynologique dans la formation détritique rouge (la premier ayant décrit par A n t o n e s c u, 1973) dans la partie moyenne de la formation. La microflore est semblable à celle décrite par A n t o n e s c u (1973); de plus il y a des rares exemplaires de pollen attribuables à *Proteacidites* cf. subscabratus C o u p e r, 1960 et au genre *Convexipollis* K r u t z s c h, 1967.

Dans la dépression de Hateg, (formation de Ciula) deux niveaux contenant de la microflore ont été découverts, dans l'affleurement de la vallée Sibișel à Sînpetru (rive gauche) et dans la rive droite de la vallée de Ciula, au sud du village, dans un affluent qui met à jour une intercalation d'argiles charbonneuses dans les dépôts détritiques rouges.

Dans la partie est de la dépression de Rusca Montană, les intercalations d'argiles charbonneuses de l'horizon piroclastique du Maestrichtien ont fourni une riche microflore dans la coupe de la vallée Slătioara (sept niveaux à microflore) et dans les affluents de la vallée Loznicioara.

2. Composition de la microflore. Les especes determinées à Sînpetru sont: Plicapollis cf. conserta Pflug, 1953, Oculopollis cf. baculotrudens (Pflug) Zaklinskaia, 1963, cf. Oculopollis sibiricus Zaklinskaia, 1963, Papilopollis ? spp., Pseudopapilopollis praesubhercynicus, Convexipollis cf. convexigerminalis Krutzsch, 1967.

Pour les autres régions — Pîclişa, Ciula, Loznicioara, Slătioara nous allons présenter ensemble les listes, les espèces étant communes, avec spécification dans le cas d'une espèce trouvée seulement dans une région. Ce sont: Leiotriletes cf. paramaximus Krutzsch, 1959 (Pîclişa); Leiotriletes spp.; Dictyophyllidites spp.; Trilites sp.; Spore type B; Echinatisporis longechinus Krutzsch, 1959; Corrugatisporites toratus Weyland, Greifeld, 1953; Cicatricosisoprites spp. (fort rares); Retitriletes sp. (Slătioara); Faveolatisporites sp. (Pîclişa); Polypodoaceoisporites spp.; cf. Lusatisporis sp. (Slătioara); Laevigatosporites spp.; Polypodiisporites spp.; Zlivisporites blanensis Pacltova, 1961; Ephedripites spp. (Pîclişa); Triporoletes cf. tornatilis Srivastava, 1972; Triporoletes spp.; Inaperturopollenites sp.; Pistilipollenites sp.; Vacuopolis sp.; Interporopollenites proporus Weyland, Greifeld, 1953; Interporopollenites cf. gracilis Krutzsch, 1960; Interporopollenites sp. (Slătioara); Plicapollis cf. pseudoexcelsus (Krutzsch) Krutzsch, 1961; Plicapollis cf. pseudoexcelsus (Krutzsch) Krutzsch, 1961; Plicapollis cf. conserta Pflug, 1953; cf. Minorpollis sp.; Pseudoplicapollis peneserta (Pflug) Krutzsch, 1967;

E. ANTONESCU et al.

Suemeghipollis triangularis Góczán, 1964; Oculopollis cf. orbicularis Góczán, 1964; Oculopollis cf. baculotrudens; Pseudoculopollis sp.; Semioculopollis praedicatus (Weyland, Krieger) Krutzsch. 1967; Papilopollis? spp., Pseudopapilopollis praesubhercynicus, Pompeckjoidaepollenites subhercynicus (Krutzsch) Krutzsch, 1967 (Slatioara); Trudopollis? spp., Trudopollis ex gr. imperfectus (Pflug) Pflug, 1953; Hungaropollis sp. (Piclisa, remanié?); Pseudotrudopollis pseudalnoides (Krutzsch) Krutzsch, 1967 (Slätioara); Normapolles non-identifies, Convexipollis cf. rotundatus Portniaghina, 1971 (Rusca Montană), Convexipollis sp. (Pîclișa), cf. "Comptonia" sp.; "Tricolporites"? sp., Subriporopollenites aff. constants Pflug, 1953 subfsp. 1; S. aff. constans Pflug 1953 subfsp. 2; Triatripollenites cf. plicatus (Pflug) Thomson, Pflug, 1953 (Ciula); cf. Engelhardtioidites sp.; Tricolpites sp. 1 (exine lisse); Tricolpites sp. 2 (exine fovéole); Tricolporopollenites spp., Liliacidites sp.; Polyvestibulopollenites sp. (Piclisa); Pollen monoporé (Piclisa); cf. Oculopollis giganteus Z a z l i n s k a i a, 1963 (Piclișa); Trileites sp. (Slătioara); Azolla sp. (Ciula); Spermatites spp., Microcarpolithes hexagonalis Wangerov, 1954 (Rusca Montană).

La microflore de toutes les régions, excepté le niveau de Sînpetru plus pauvre, est unitaire, très riche en genres, espèces et nombre d'exemplaires. Le palynofacies est constitué par des microspores, pollens, tissus végétaux, et plus rarement, à Ciula et Rusca Montană par des mégaspores et restes *incertae sedis* de type Spermatites et Microcarpolithes. C'est un palynofacies continental typique dans lequel les dinoflagllés manquent; un seul exemplaire d'Ophiobolus sp. a été observé à Loznicioara. Les microspores trilètes lisses de type Leiotriletes et Dictyophyllidites sont les plus fréquents. Suivent ensuite les spores à cingulum de type Polypodiaceoisporites, ensuite les spores ou pollens du groupe Zlivisporites — Triporol etes. Le pollen disaccate est presque absent, le pollen de type Inaperturopollenites fréquent.

Les pollens du groupe Normapolles Pflug, 1953 et Postnormapolles Pflug, 1953, constituent le fond de l'association. Pseudopapilopollis praesubhercynicus est l'espèce index de l'association étant restreinte au Campanien-Maestrichtien (Góczán, Groot, Krutzsch, Pacltova, 1967; Antonescu, 1973) et commune dans toutes les régions. Les especes du genre Convexipollis sont aussi restreintes seulement au Maestrichtien (Góczán et al., 1967; Portniaghina, 1973). Suemeghipollis triangularis, Semioculopollis praedicatus et Pseudoculopollis sp. sont communs au Sénonien. La plupart des espèces présentes dans l'association ont une distribution stratigraphique allant du Cretacé supérieur au Paléogène; nous signallons Interporopollenites proporus, Oculopollis cf. baculotrudens, Pompeckjoidaepollenites subhercynicus, Trudopollis imperfectus, Plicapollis conserta, Plicapollis peneserta, Tricolpites spp.+ Tricolporopollenites + Liliacidites (du groupe Postnormapolles), Pseudotrudopollis pseudalnoides (Maestrichtien-Paléocene). Les espèces qui font leur début au Paléogène ou qui sont cantonnées exclusivement au Paléocène manquent; nous nous rapportons aux espèces des genres Stephanoporopollenites Thomson, Pflug, 1953; Thomsonipollis Krutzsch, 1960; Tetrapollis Pflug, 1953; Intratriporopollenites Thomson, Pflug, 1953; Duplopollis Krutzsch, 1959; etc. Aussi nous considé-

74

rons que l'association à *P. praesubhercynicus* appartient au Maestrichtien supérieur. Enfin, nous remarquons qu'il y a des différences entre nos espèces et celles signalées par Balteş (1966; 1980, dans D ragastan, Petrescu, Olaru) à Rusca Montană.

3. Corrélations palynologiques. La corrélation palynologique de l'association à P. pracsubhercynicus des formations susmentionnées se fait avec la microflore du Maestrichtien supérieur des Monts Bakony — Hongrie (G o c z a n, 1973) et le Maestrichtien supérieur de l'Allemagne de l'Est (Oebisfelder Bild, G o c z a n et al., 1967). Des traits communs existent avec les microflores de la partie inférieure des couches de Stryi de l'Unité de Skolle (P o r t n i a g h i n a , 1973) et du Maestrichtien de Provence-France et du nord-est de l'Espagne (M é d u s, 1972). La corrélation avec les dépôts du Maestrichtien des autres unités de Roumanie (les Monts Metaliferi par exemple) s'avère difficile à cause du palynofaciès continental des dépôts examinés.

4. Problème de l'age de la formation de Ciula. Il s'ensuit que l'âge des dépôts à dinosauriens et des dépôts rouges détritiques à intercalations charbonneuses de la région de Ciula appartiennent au Maestrichtien supérieur. Il importe d'élucider le problème de l'âge du reste de la formation de Ciula, donc des dépots détritiques rouges situés au-dessus des niveaux à microflore maestrichtienne de la partie centale-ouest de la depression de Hateg, jusqu'au premiers dépôts miocènes à faune marine. Nous avons découvert dans la vallée de Peștenița, dans une intercalation argileuse grise de la formation de Ciula, une association palynologique dont la composition est semblable à celle de l'association à P. praesubhercunicus. mais dans laquelle il y a de nombreux exemplaires de Proteacidites sp. Cette association pourrait représenter un niveau plus élevé du Maestrichtien ?. Il est possible pourtant, que cette association soit plus récente (Proteacidites persistant au Paléogène) et que la formation de Ciula se continue au Paleogene? . La question reste ouverte, tenant compte de l'étrange allure de cette association à *Proteacidites* (genre rare en Europe, commun au Maestrichtien et au Paléocène des provinces siberienne et américaine) et du fait que nous n'avons identifié qu'un seul niveau avant cette association. Aussi la partie inférieure de la formation de Ciula comprenant les dépots à dinosauriens, ceux des environs de Ciula et, peut-être, ceux de Pestenita, appartiennent donc au Maestrichtien et ne doit pas être comparée avec le facies semblable mais à faune de molusques et mamifères oligocènes de l'est de la dépression. L'âge de la partie supérieure de la formation de Ciula (maestrichtien ou paléocène) reste à être précisé.

D) Conclusions

Nos recherches ont mises en evidence une microflore à traits communs — une association palynologique à *Pseudopapilopollis praesubhercynicus* d'âge maestrichtien supérieur dans quelques formations au sud-est de la Roumanie. Cette association permet de correler les formations suivantes : 1) la formation détritique rouge de la rive gauche du Mures entre Vințul de Jos et Alba-Iulia à Pîclișa; 2) la formation de Densuș et la partie infé-

rieure de la formation de Ciula comprenant les dépôts à dinosauriens et les dépôts détritiques rouges à intercalations charbonneuses de Ciula de la partie centrale-ouest de la dépression de Hateg; 3) la partie supérieure contenant des charbons de l'horizon pyroclastique de la partie est de la dépression Rusca Montană. Ces formations appartiennent au Maestrichtien, qui dans cette région de la Roumanie présentent un faciés continental avec des dépôts détritiques rouges, des roches volcanoclastiques (plus fréquentes vers l'ouest) et des charbons. Les gastropodes découverts confirment l'âge maestrichtien supérieur de la formation de Ciula.

Le contenu palynologique du Maestrichtien continental du sudouest de la Roumanie peut être corrélé avec celui du Maestrichtien des Monts Bakony de la Hongrie et avec celui du Maestrichtien supérieur de l'Allemagne de l'Est. Les traits communs palynologiques existent aussi avec la partie inférieure des couches de Stryi supérieures de l'unité de Skolle des Carpates Orientales et avec le Maestrichtien de la Provence— — France et du nord-est de l'Espagne.

Les réconstitutions paléogéographies qui peuvent être faites par l'intermédiaire de ces formations continentales — résultat de l'activité des paléofleuves qui devaient charrier du matériel détritique et végétal qui s'accumulait dans les tourbières, les manifestations volcaniques, les lacs et les dinosauriens qui vivaient aux voisinage — donnent du paysage à l'époque une image particulière.

BIBLIOGRAPHIE

- Antonescu E. (1973) Asociații palinologice caracteristice unor formațiuni cretacice din Munții Metaliferi. D. S. Inst. geol. LIX /3 (1972), p. 115 - 169, 20 pl., București.
- Balteş N. (1966) Remarques sur la microflore de certains depôts charbonneux du bassin de Rusca Montană, Roumanie. Pollen et Spores, VIII, I, p. 213 - 221, 3 fig., 1 pl., Paris.
- Bleahu M., Dimian M. (1967) Studii stratigrafice și tectonice în regiunea Feneș-Ighiel-Intregalde (Munții Metaliferi). D. S. Com. Stat Geol. LIII/1, (1965 - 1966), p. 282 -- 302, 2 pl., București.
- Dimian M., Popa-Dimian E. (1964) Date stratigrafice și sedimentologice privind formațiunile cretacice dintre valea Mureșului și valea Ampoiului. D. S. Com. Geol. L/1 (1962-1963), p. 107 - 130, 6 fig., 12 pl., București.
- Dincă A., Tocorjescu M., Stilla A. (1972) Despre virsta depozitelor continentale cu dinozaurieni din bazinele Haţeg şi Rusca Montană. D. S. Inst. geol. LVIII/4 (1971), p. 83 - 94, 1pl., 1 fig., București.
 - (1977) Geologia bazinului Rusca Montană. Partea de Vest. An. Inst. geol. geofiz, LI,
 p. 99 174, 18 pl., București.
- Dragastan O., Petrescu J., Olaru L. (1980) Palinologie, 419 pag. Ed. Didactică și Pedagogică București.
- Góczán F., Groot J. J., Krutzsch W., Pacltova Blanka (1967) Die Gattungen des "Stemma Normapolles Pflug 1953 b". Angiospermae. Paläontol. Abh. II, 3, p. 427 - 542, 19 pl., 1 kart., 1 tabl., Berlin.

76

🖵 Institutul Geologic al României

 (1973) Oberkretazische Kohlenbildung in Ungarn im Lichte des Palynologie. In "The Palynology of Cenophytic". Proceedings of the III International Palynological Conference. Publ. Off. Nauka, Moskwa, p. 28 - 35, 4 fig.

- Mărgărit C., Mărgărit M. (1962) Asupra prezenței unor resturi de plante fosile în împrejurimile localității Densuș (bazinul Hațeg). Stud. cerc. geol. Acad. R.S.R., 12, 2, p. 150 - 16? Bucuresți.
- Medus J. (1972) Palynological zonation of the Upper Cretaceous in Southern France and North Eastern Spain. Review of Palaeobolany and Palynology, 14, 3/4, p. 287 - 297, 2 fig., 2 tab., Amsterdam.
- Pop G., Neagu T., Szász L. (1972) Senonianul din regiunea Hategului (Carpații Meridionali). D. S. Inst. geol. geofiz., LVIII/4 (1971), p. 95 - 118, pl. I - IV, 3 fig. București.
- Portniaghina L. A. (1973) Stratigraphy and Palynology of the Upper Cretaceous Paleogene deposits of the Skolle zone of the Carpathians. In "The Palynology of Cenophytic" Proceedings of the III International Palynological Conference, p. 39 - 42, 1 pl., Publ. Off. Nauka, Moskwa.
- Rădulescu C., Iliescu G., Iliescu M. (1976) Un Embrithopode nouveau (Mamalia) dans le Paléogène de la dépression de Hateg (Roumanic et la géologic de la région).
 N. Jb. Geol., Paläont. Mb., H, 11, p. 690 698, 3 fig., Stuttgart.
- Tomescu C., Panin Ș., Georgescu F., Mantea G., Antonescu E. (1969) Contribuții la stratigrafia depozitelor neocretacice din Munții Apuseni de Sud. St. Cerc. geol., geof., geogr., Seria geol., 14, 1, p. 239 - 252, 18 fig., București.
- Wenz W. (1939) Handbuch der Paläozoologie, Gastropoda, 6/3 Prosobranchia p. 481 720. Berlin.
 - (1959) Id., 6/2 Euthyneura, p. 201 400 (1960) id., p. 401 600.

IGR.

THE BLACK SHALES FORMATION OF THE EAST CARPATHIANS, LITHO-BIOSTRATIGRAPHY AND OIL POTENTIAL¹

BY

NICOLAE BALTES², EMANUEL ANTONESCU³, DAN GRIGORESCU⁴, GRIGORE ALEXANDRESCU³, MIHAI MICU³

The Lower Cretaceous deposits of the External Flysch Zone of the East Carpathians (Audia, Tarcău and Marginal Folds Units) developed in a peculiar lithofacies, generally known as the Black Shales Formation (BSF) with different names for the various units (Audia Beds, Sărata Beds, Streiu Beds) where this formation has several distinct lithofacial features, previously mentioned by Filipescu et al. (1952), Dumitrescu (1952), Băncilă (1955), Mirăuță, Mirăuță, (1964), etc.

The BSF represents the oldest deposits in all three structural units of the External Flysch Zone. Their initial basement is unknown because of shearing during overthrusting. At the upper part, this formation is conformably covered by the Variegated Shales Formation (Vraconian-Coniacian).

The age of the BSF was established by several assemblages or isolated specimens of ammonites, belemnites, inocerams, foraminifera, etc. (Table 1), which proved its stratigraphical extension from Hauterivian to Albian. Mention should be made of the Vrancea Half-Window (Marginal Folds Unit) where the micropaleontological evidences of J. Săndul escu (in Dumitrescuetal, 1971— unpublished) established the presence of the Turonian in the upper part of the Streiu Beds.

Recently, very detailed palynological studies (Balteş, 1977 and unpublished; Antonescu et al., 1978; Antonescu et al., in press) carried out in the whole BSF area enriched its paleontological content and established several characteristic associations for each lithostratigraphic subdivision (Table 2).

Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association.
 1981 September 8 - 13, Bucharest, Romania.

² Ministry of Petroleum, Bucharest, Romania.

³ Institute of Geology and Geophysics, str. Caransebeş 1, 78344 Bucharest, Romania.

⁴ University of Bucharest, Bd. Bălcescu 1, Romania.

TABLE 1

Paleontological content (anymonites, bivalves, elc.) of the Black Shales Formation

1. Sideritic rocks; 2, cherts (lydites); 3, argillaceous shales; 4, calcareous concretions; 5, sandstones; 6, glauconitic sandstones; 7, silicified linestones.

TABLE 2

Palyno-stratigraphical Zonation of the Black Shales Formation

Chrono- and		Palyno-stratigraphic subdivisions						
Phytostrati-		Marginal Folds Unit						
g	raphy	Audia Unit Tarcâu Unit Bistrița Half-window Vrancea Half-window						
Upper Valanginian – Lower Vraconian (Lowermost part) Black Shales (= Audia Beds)	Upper member with glauconi- tic sandstones	VII Ovoidinium verrucosum and Pseudoceratium dettmannae assemblage						
		VI Litosphaeridium siphoniphorum, Carpodinium obliquicostatum, Hexagonifera chlamidata and Stephodinium coro- natum assemblage						
	nber with es and concretions	V Chlamidophorella nyei, Cribroperidinium orthoceras, Astrocysta cretacea and Ovoidinium scabrosum assemblage						
	Middle mer lydien calcareous	IV Prilixosphaeridium deirense, Cribroperidinium sepimentum and Aptea polymorpha assemblage						
	ower member with sideritic rocks	Dingodinium albertii Druggidium deflandrei and Meiourogonyaulax stoveri assemblage						
		Broomea exigua and Pse- udoceratium pelliferum assemblage						
		Muderongla tetracantha and Kleithriasphaeridium fasciatum assemblage						
	1	I - VII Number of the assemblage						

Lithostratigraphy. Except for the Streiu Beds present only in the Vrancea Half-Window (Marginal Folds Unit), the BSF is lithologically subdivided into three main members (Table 1).

In the Audia Unit the lower member of the BSF consists of black shales, siltstones interbedded with calcareous sandstones. Sideritic limestones are also present, as lenses or, more scarcely, as continuous layers. The next member is generally made of argillaceous black shales and siltstones with lydites (cherts) intercalations. Sandstones are rare or absent. The upper member of the BSF is mostly represented by well-bedded glauconitic sandstones of the orthoquartzitic type with black shales and siltstones intercalations. BSF sandstones sometimes contain greenschists fragments derived from the foreland of a Dobrogean type area which proves not only a Carpathian, but also a foreland origin for this formation.

€ — c. 50

3

The middle and upper members contain levels of sedimentary breccias rich in granitoids, granodiorite fragments with red feldspar, more frequent in the Variegated Shales which overlie the BSF. These fragments originated in a cordillera (The Cuman Cordillera, Murgeanu, 1937), most probably developed west of the BSF sedimentary area. The uneven distribution of granodiorite-bearing breccias along the Audia and Tarcău units suggests that this cordillera was rather a chain of islands discontinuously supplying the adjacent small areas with materials.

The BSF of the Tarcău Unit generally shows the same lithofacies as the Audia Unit, the main differences chiefly consisting in the thinning tendency, especially southwards, of the glauconitic sandstones member (Săndulescu & Jana Săndulescu, 1964), locally replaced by quartzitic sandstones with calcareous cement (Băncilă, 1955).

The Sărata Beds, outcropping in the Bistrița Half-Window (Marginal Folds Unit), have also been subdivided into three members (M i r ău ță & E l e n a M i r ă u ță, 1964), only the upper member lithologically differs from those separated in the innermost units. This sandy limestones member, regarded as an outer equivalent of the glauconitic sandstones, consists of sandy, organogenous limestones, interbedded with black, bituminous shales. The laminae or lenses of spongolitic rocks are present in the middle part of each sandy limestone layer.

The Streiu Beds, the equivalent of the BSF in the Vrancea Half-Window (Marginal Folds Unit), are generally similar to the BSF. They consist of a comparatively monotonous, rhythmical alternation of black, sometimes bituminous shales with graded calcareous sandstones. Rather rrequent, beds or lenses of sideritic marly-limestones and thin conglomefates with greenschists elements of a Dobrogean type are also present.

Palynological assemblages. The BSF has supplied rich palynoassemblages. The lower member with sideritic rocks is dominated by continental microfloral elements (microspores and gymnospermic, coniferal and benttital pollen). Towards the middle member and the upper member, the marine microflora (dinoflagellates) becomes quantitatively predominant. Up to the present, in the whole BSF there have been identified seven specific palyno-assemblages (Table 2, numbered I - VII) corresponding to the Upper Valanginian (?) – lowermost Vraconian stratigraphic interval.

In the lower member with sideritic rocks, three palyno- assemblages have been identified (I, II, III) and in only one place — the Marginal Folds Unit in the Bistrita Half-Window — at the top of the deposits in this member, the 4th assemblage has also been located, which is otherwise fairly represented in the basal middle member with cherts and calcareous concretions.

I. The Muderongia tetrachanta and Kleithriasphaeridium fasciatum Association (? Upper Valanginian). It has been solely identified in the lower part of the complex, only in the Audia Unit (the Moldova Valley, the Ostra Valley, Petriceni, near Tg. Secuiesc, Chiruş and Zagonul Mic streams, south of Covasna). The insertion of this association in the Upper Valan-

ginian interval is temporary, since dinoflagellates are scarce, and the existing spore and pollen species have a wider stratigraphic distribution.

II. The Broomea exigua and Pseudoceratium peliferum Association (Middle-Upper Hauterivian). It has been revealed in the Audia Unit (the Moldova Valley, at Moldova Suliţa, then the Corlăţeni-Cimpulung Moldovenesc Stream, the Suha Valley, Petriceni, Chiruş and Zagonul Mic streams, south of Covasna). The dinoflagellates content is richer as compared to Association I, which constituted the separation criterion for the latter.

III. The Dingodinium albertii, Meiourogonyaulax stoveri and Druggidium deflandrei Association (Upper Barremian). It has been located in the Audia Unit (the Demăcuşa-Moldovița Valley and the Corlățeni-Cîmpulung Moldovenesc stream), and in the Marginal Folds Unit (the Bistrița Half-Window) in the Horăicioara Valley. The association is characterized by acmezone genera and species occurrence in the Upper Barremian. This association, prevailing in phytoplankton, extends over quite a large areal. In the middle member with cherts, the Associations IV, V and VI have been identified, the last passing on into the upper member as well (the upper member with glauconitic sandstones).

IV. The Prolixophaeridium deirense, Cribroperidinium sepimentum and Aptea polymorpha Association (Aptian). It has been dsclosed in all three structural units. In the Audia Unit it occurs in the northern part (the Demăcuşa-Moldovița Valley, the Paltin Stream, the Sadova Stream, the Suha Mică and Suha Mare streams and the Ostra Valley) and in the southern part (the Păpăuț and Delteg valleys near Zagon, the Bota and Crasna-Buzău valleys). Within the Tarcău Unit, it has been also discovered at Stulpicani-Suha Bucovineană and Plotonița. It has equally been crossed by certain drillings (Ața-Brateş, Ojdula, Comandău, Bîsca-Cernat and Băile Siriu). In the Putna-Vrancea Half-Window, the association has been encountered on the Strei, Cireşu streams, a.s.o.

It is necessary to stress that this association has also been identified in the Bistrita Half-Window, at the top of the lower member with sideritic rocks, namely on the Horăicioara Valley. The association is characterized by species either with a first occurrence during the Aptian or showing part of the acmezones at this level.

V. The Chlamidophorella nyei, Cribroperidinium orthoceras, Astrocysta cretacea and Ovoidinium scabrosum Association (Lower-Middle Albian). It has been encountered in the same places as the previous (IV). Moreover, it also occurs in the Audia Valley, the Bicaz Valley, the Zábrătău — Buzău Valley and in the Bîsca-Cernat well (the Tarcău Unit), as well as in the Cuejdiu and Sărata valleys around Piatra Neamt (the Marginal Folds Unit). Taking into account the larger stratigraphic distribution of the index species of the association, it is possible for its lower part to include, partly, the Upper Aptian.

VI. The Litosphaeridium siphoniphorum, Carpodinium obliquicostatum, Hexagonifera chlamidata and Stephodinium coronatum Association (Upper Albian). It has been encountered at the uppermost middle member

 $\mathbf{5}$

(with cherts and calcareous concretions) in all structural units. It has been equally identified in the upper member, in the following places : the Corlățeni — Cimpulung Moldovenesc Stream in the Audia Unit, the Măguricea-Găinești Valley (the Tarcău Unit)) and the Cuejdiu Valley (the Marginal Folds Unit), as well as in certain boreholes, such as Bîsca cu Cale, etc. (the Tarcău Unit). The association is characterized by the presence of some genera and species first occurring in the Upper Aptian (the "inflatum zone"), thus being one of the richest and best individualized associations. The deposits of the upper subdivision (the upper member with glauconitic sandstones) include in their lower part the Association VI and in their upper part the Association VII, which also extends in the formation basis over the Black Shales, i.e. in the Variegated Shales Formation (Vraconian-Coniacian).

VII. The Ovoidinium verrucosum and Pseudoceratium dettmannae Association (Vraconian). It has been found in the same places as the previous one, only in the central and northern parts of the East Carpathians (the Măguricea-Găinești Valley — the Tarcău Unit and the Corlățeni Stream—the Audia Unit). The association is characterized by index species occurrence, which at a European level are solely stocked in the Vraconian, the rest of their componence resembling Association VI.

The (?) Valanginian and Hauterivian Associations (I and II) correlate to the palyno-associations in the Sinaia Beds (Neocomian) especially to those in the pelitic sequence from the Prahova Valley, to the Hauterivian from Dealul Sasului (the Dîmbovicioara Tunnel) and to the lower part of the Braşov marls. The Associations III and IV correlate to those in the upper part of the Comarnic Beds in the Ceahlău Unit, the Barremian limestones in the Dîmbovicioara Tunnel, the upper part of the Braşov Marls the lower part of the Svinița Marls (Barremian, in Banat), as well as to the palyno-associations of the Lower Aptian in the stratotype. The Association V (and VI?) correlates to the associations identified in the Palanca Beds (the Bistrița, Bicaz and Trotuş valleys), especially at the Lower-Middle Aptian level.

The Associations VI and VII allow larger interregional correlations and parallel may be drawn to the Upper Albian and Vraconian microfloras in the Carpathian Foreland, as well as to those in the stratotypes, in southern France and south-eastern England.

Sedimentology and basinal evolution. The East Carpathians BSF represents a Flysch Formation deposited in a sedimentary basin in which reducing (euxinic and subeuxinic) conditions prevail. As a whole, this formation has a pararhythmic character, with a large variability (from 1:1 to 1:20) between the thicknesses of the epiclastic and lutitic terms. The lithological, stratonomic and sedimentological features of the BSF indicate, at least in case of the Audia Unit, two informal subdivisions, outlining the major basinal evolutionary stages : a lower, prediastrophic subformation, corresponding to the first two members of this formation; and an upper, syndiastrophic subformation, represented by the upper member, of glauconitic silicified sandstones.

The lower subformation is synchronous with the sedimentary basin separation, when subsidence is still uncompensated by sedimentation.

84

– Institutul Geologic al României

During the deposition of this subformation, two sedimentogenetic stages can be distingushed : the "vacuity stage", generally characterizing the lower member, and the "shaly flysch", corresponding to the median member with cherts of the BSF. The "vacuity stage" is characterized by typical turbiditic sequences, represented by subgraywackes and bioclastic sandstones alternating with pelagic episodes. The sandstones are gradually bedded with scour marks at their lower part. Microbiosparitic limestones, representing the pelagic episodes, are also gradually bedded, planktonic foraminifera accumulating in the lower part of each bed. Geochemically, the euxinic episodes favourable to organic matter preservation and to syngenetic pyrite accumulation, and the subeuxinic episodes (represented by sideritic rocks) alternate with neutral or weakly oxidant ones, while authigenic glauconite formed.

The presence of bioclasts, recorded at several levels, is connected to the massive supplies of organogeneous remains (briozoans, molluscs, sponges, red and green algae), thus deriving from a shelf zone and being mixed autochthonous bioclasts (crinoids, benthic forams, etc.). The latter demonstrate that aerobic conditions were, at least for a while, reinstalled. This situation determined Grigorescu (1971) to separate a "bioclastic horizon" in the Covasna area, subsequently generalized in this lower part of the BSF in the Audia and the Tarcau units (Grigorescu Alexandrescu, 1977).

The "shalv flysch stage" is characterized by a greater stratonomic and lithostratigraphic uniformity. Euxinic conditions prevail here, subeuxinic episodes being known only in the lower part of the middle member with cherts. Silicolites are mostly represented by cherts, more rarely by spongolites. Towards the upper part of this "stage", as a consequence of the Mesocretaceous tectogenic phase, some intrageosynclinal cordilleras were formed, furnishing "exotic" rocks such as granodiorites with biotite, porphyric diorites, microdiorites, etc. (Filipescu & Alexandrescu, 1962; Grigorescu & Anastasiu, 1976).

Paleocurrent measurements (Dumitriu & Dumitriu, 1965; Joja & Dumitriu, 1972) indicate transverse or longitudinal transport directions. The presence of iron in the sideritic rocks requires a large emerged area in the basin vicinity, where lateritic soils widely developed. During the deposition of this subformation, the bilateral supply was occasionally accompanied by an "internal" one, due to the presence of the cordilleras.

The upper subformation is represented by a sandy-shaly flysch in which fine- to medium-grained glauconitic sandstones are interbedded with siltstones and black or gray shales. The petrographic study of the sandstones in the Covasna Valley outcrop (Grigorescu, 1970) reveals some important features as follows: the sandstones (0.1-1.5 m)thick) gradually bedded, with numerous sole marks, are oligomictic, of a quartzarenite type (more than 95 % of epiclasts are represented by quartz and metaquartzite grains); fine fraction (less than 0.2 mm in diameter) is 70 % of the granulometric fractions of these sandstones; the sorting index varies between 1.2 - 1.6.

In comparison with the lower subformation the bioclasts are more scarce here, mostly represented by sponge spicules. Geochemically, the

85

N. BALTEŞ et al.

environment during the sedimentation of the upper subformation was generally neutral to weakly oxidant, allowing for the glauconitic authigenesis. Subeuxinic conditions diminished as compared to those for the lower subformation. During the sedimentation of the upper subformation in the Audia and Tarcău Units, in the Marginal Folds Unit sandy-limestones with cherts accumulated in the Bistrița Half-Window area, while

TABLE 3

			Microvegetal substance analysis							Hydrocarbons possibly generated	
Chrono- and lithostratigraphy		Ke-		Ro	FI(UV)	T(%)	OD	Oil potential	+	Quantities	
		rogen type	OMI	average values				Types	(Kg/t)*		
Black shales (= Audia Beds)	Upper Hauterivian – Lower Vraconian (Lower most part)	Upper member with glauconitic sandstones	F.X.	0.8- 2.1	0.55	v.m. (480 nm)	75	wcakly	ույլ	_	-
		Middle member with cherts and calcareoos concretions	F.X.		1,57	g.o.m. (580 nm)	63	stron- gly	moderate	Condence and weakly oil	2.01-5
			X.F.	3.8- 3.95		-			weakly	Condence, heavy oil and dry gases	0.5-2.0
			A.F. (\$)	3.92- 4.15	1.30	1 .30 g.m (530 nm)	60				
		Upper Hauterivi	Lower member with sideritic rocks	X.F. (A)	2.4- 2.8	2.02	v.s. (500 nm)	70	mode- rate	very weakly	oil and semi-dry methan

Oil potential of the Black Shales Formation

Legend

v = green; g = yellow; p = orange; m = matly; s = brightly; nm = nannomicrons; OMI = organic metamorphism index; Ro = vitrinite reflectance; Fl(UV) = Fluorescence (ultraviolet) T = Transglucency; OD = organic dyagenesis; F = Phytoplanktogenous; X = Xylogenous; A = amorphogenous; S = Sporogenous; * = after Espitalie et al. (1977)

in the Vrancea Half-Window a monotonous sequence of black shales and sandstones or silt sandstones continuously deposited from Upper Hauterivian to Turonian (?).

Oil potential. The following conclusions were reached through an original investigation methodology of the oil potential (Baltes, 1973): The BSF metamorphism generally displays different values between 2.5 - 4.1 for the lower member with sideritic rocks and lesser values for the other two members (Table 3). The microvegetal material predominantly belongs to the amorphogenous and subordinate sporo-and phytoplanktogenous groups, in the lower part, while in the middle and upper parts it is characterized by the phytoplanktogenous and subordinate xylogenous materials. The lower member with sideritic rocks displays all the oil source-rock features, while the hydrocarbons possibly generated by it could belong to heavy oil or thermic methane. The uppermost lower member with sideritic rocks, together with the shaly member with lydites (cherts), are affected by a strong metamorphism, including values between 3.8 - 4.1. Their petroligenous potential is limited to heavy oil and to restricted thermic methane amounts. The uppermost BSF, i.e. the upper member with glauconitic sandstone, has a lower metamorphism, its values varying between 0.8 - 2.1, unable to generate hydrocarbons.

REFERENCES

- Antonescu E., Ion J., Alexandrescu G. (1978) Nouvelles données biostratigraphiques concernant les Schistes Noirs et les argiles bariolées des Carpathes Orientales. D. S. Inst. geol. geofiz., LXIV, 4, p. 43 - 61, 7 pl. București.
 - A lexandrescu G., Micu M. (1982) Dinoflagellates in the lower part of the black shales formations (East Carpathains). D. S. Insl, gcol. gcofiz. LXVII/4, p. 5-19, 10 pl., Bucureşti.
- Balteş N. (1973) Considerații asupra relațiilor dintre gradul de metamorfism al materialului palinologic din apele primare de zăcămînt și potențialul petroligen al stratului purtător. Rev. Petrol și Gaze, v. 24, 12, p. 727 - 730, București.
- Băncilă I. (1955) Palcogenul zonei mediane a Flișului. Bul. șt. al Acad. RSR, VII 4, p.1201 -1233, București.
- Dumitrescu I. (1952) Studiul geologic al regiunii dintre Oituz și Coza. An. Com. Geol. XXIV, p. 195 - 260, București.
 - Săndulescu M. (1974) Romanian Carpathians the Flyschzone in "Teclonics of the Carpathian – Balkan Regions", p. 253 – 264, Bratislava.
- Dumitriu C., Dumitriu M. (1965) Observații sedimentologice privind zona flișului cretacic-paleogen dintre văile Covasna și Buzău. *St. cerc. geol.*, 10/1, p. 265 - 271, București.
- Filipescu G. M., Drăghindă I., Mutihac V. (1952) Contribuții la orizontarea și stabilirea virstei Șisturilor negre din zona mediană a flișului Carpaților Orientali Comunic. Acad. RSR II, 9 - 10, p. 591 - 598, București.
 - Alexandrescu Gr. (1962) Répartition des grès grossiers et des arkoses à feldspath rouge dans le Crétacé des Carpathes Orientales. Rev. Roum. de Géol., Ed. Acad., VI, 2, p. 22 - 43, București.

87

- Institutul Geologic al României

N. BAL	TES et	al.
--------	--------	-----

- Grigorescu D. (1970) Studiul microfacial al complexului sferosideritic al zonei de solzi (pinza șisturilor negre) din Carpații Orientali. Anal. Univ. Buc., XIX, p. 183 - 201, București.
 - (1971) The petrography of the glauconitic quartzarenites in the Black Schists Nappe (the section of the Covasna Valley). *Rev. Roum. Geol.*, 14/2, p. 205 216, București.
 - , Anastasiu N. (1976) Constituenții clasici grosieri ai depozitelor cretacice din unitatea șisturilor negre: semnificație sedimentologică. Slud. și cercet. de Geol. 21, București.
- Joja T., Dumitriu M. (1972) New sedimentological data concerning the emplacement of the deposition area axis for the sphaerosideritic horizon of the black shales from the East Carpathians. *Rev. Roum. Geol.* 16, 2, p. 131 - 133, București.
- Murgeanu G. (1937) Sur une cordillère antésénonienne dans le geosynclinal du flysch carpathique. C.R. Inst. Geol. Roum. XXI, p. 69 - 94, București.
- Săndulescu M., Săndulescu J. (1964) Cercetări geologice în regiunea Brețcu-Ojdula și Comandău. D. S. Inst. Geol. L/2, p. 383 - 400, București.

RÉFLEXIONS SUR LES CALPIONELLES REMANIÉES DANS LE CRETACÉ SUPERIEUR DE L'UNITÉ DES PLIS MARGINAUX (CARPATHES ORIENTALES, ROUMANIE)¹

PAR

MICHEL DURAND-DELGA 2, MIHAI MICU 3

La surprenante présence de Calpionelles, essentiellement empruntées au Tithonique terminal-Berriasien inférieur dans des sédiments du Crétace supérieur appartenant à la zone la plus externe du flysch des Carpathes roumaines ("unité des plis marginaux") pose divers problèmes, d'ordre sédimentologique, structural et paléogéographique Nous allons tenter d'y répondre.

I. Situation geologique

Dans les demi-fenêtres de Vrancea et de Bistrița, les couches de Lepșa représentent le faciès le plus externe du Sénonien des Carpathes orientales. Placées dans le Turonien par Dumitrescu (1958) ou dans le Turonien-Sénonien inférieur par Mirăuță et Mirăuță (1964), leur âge sénonien, voire paléocène inférieur — au moins dans la région de Vrancea — a été prouvé par une riche microfaune (Săn dulescu in Dumitrescu et al., 1970, 1971) associée à de nombreux restes d'Inocérames, grands Foraminifères, Bryozoaires, Algues calcaires etc. Ultérieurement Micu (1973) a signalé la présence d'un microfaciés à *Pithonella ovalis* à la partie inférieure de ces Couches de Lepșa, en concluant que celles-ci comportent également du Turonien supérieur, dans la demi-fenêtre de Bistrița.

Situées au-dessus des Couches de Tisaru supérieures dans la demifenêtre de Vrancea et reposant sur les Argiles bariolées (Vraconien-Turonien) dans la demi-fenêtre de Bistrița, les Couches de Lepșa sont surmontées respectivement par les Couches de Cașin (Paléocène) dans la région de Vrancea et par les Couches de Runcu dans la région de Bistrița. Récem-

¹ Note présentée au 12ême Congrès de l'Association Géologique Carpatho-Balkanique 8 - 13 septembre 1981. Bucarest, Roumanic.

² Université Paul Sabatier, Laboratoire de Géologie Méditerranéenne, 38, rue des Trente-Six Ponts, 31400, Toulouse, France.

³ Institut de Géologie et Géophysique, str. Caransebeş 1, 78344 Bucarest, Roumanie.

ment M i c u (1977), en s'appuyant sur des arguments micropaléontologiques, a démontré l'âge paléocène des Conglomérats de Horăicioara, considérés auparavant (M i r ă u ț ă, M i r ă u ț ă, 1964) comme appartenant au Sénonien. Ces conglomérats constituent en realité une particularité locale de la partie inférieure des Couches de Runcu; ils représentent ainsi le parfait équivalent des Conglomérats de Piatra Streiului qui remplacent localement, sur le flanc est de l'anticlinal de Streiu dans la région de Vrancea, les Couches de Cașin inférieures (D u m i t r e s c u, 1952; 1963).

La lithologie des Couches de Lepşa, assez monotone, est représentée par une alternance plus ou moins rythmique de grès calcaires granoclassés, souvent microconglomératiques à leur partie basale, de calcaires micritiques en couches épaisses de 15 - 30 cm, contenant fréquemment des chailles, et de marnes grises en couches ne dépassant pas quelques centimètres. Parfois la couleur des marnes et des argiles est rouge ou gris-verdâtre. Vers le haut, les Couches de Lepşa présentent des passées plus marneuses, dans lesquels sont intercalés plusieurs niveaux de brèches organogènes à éléments verts de type dobrogéen.

La puissance des Couches de Lepşa varie de 200 à 300 m. Dans le cas de la demi-fenêtre de Bistrița leur épaisseur est plus difficile à établir à cause de nombreux accidents tectoniques, produits pendant le diapirisme des Couches de Sărata (Crétacé inférieur) qui affleurent dans l'axe de l'anticlinal de Horaița-Doamna.

II. Les Calpionelles des couches de Lepşa

Parmi les échantillons recucillis à la partie inférieure des Couches de Lepsa de la région de Vrancea quelques-uns ont révélé des Calpionelles. Celles-ci se trouvent dans des micrites à fréquents petits quartz détritiques, riches en spicules siliceux de Spongiaires, en Pithonelles, avec également parfois des Radiolaires sphériques et des Gümbélines. Dans quelques cas, les sections de Calpionelles sont relativement fréquentes. La douzaine d'exemplaires déterminables peuvent provenir d'un même niveau primitif, du Tithonique terminal-Berriasien inferieur, caracterise par : Calpionella alpina plus ou moins typique (espèce dominante), Calpionella ex gr. alpina (grande forme, relativement haute, ebauchant un passage à Calpionella elliptica), Crassicollaria parvula, plus ou moins typique, et Crassicollaria sp., forme haute. En outre, quelques Tintinnopsella ex gr. carpathica proviennent des horizons post-tithoniques. D'autres echantillons ont montré la présence de quelques Calpionella alpina typiques et Calpionella cf. alpina à petit collier, d'un âge imprécis, du Tithonique supérieur au Berriasien franc. Un calcaire gréseux riche en spicules de Spongiaires et en Radiolaires a montre une section de ? Lorenziella cf. hungarica. espèce connue dans le Berriasien supérieur.

Les échantillons provenant des Couches de Lepşa de la demi-fenêtre de Bistrița ont également fourni des exemplaires typiques de Calpionella alpina et Crassicollaria sp., toujours associés à de nombreux spécimens de Pithonella ovalis et Pithonella sphaerica, spicules de Spongiaires, Gumbélines etc. Il faut noter le fait que dans les deux régions quelques échantillons contiennent, à coté des Calpionelles, diverses espèces de Globotruncana, Rotalipora, Heterohelix etc.

🛼 Institutul Geologic al României

90

2:

III. Le problème du remaniement des Calpionelles

Le remaniement des Calpionelles est un phénomène relativement commun si les assises qui les englobent, encore insufisamment indurées et déposées sur des pentes instables, sont affectées de glissements sousmarins entrainant une resédimentation. Cette situation est banale dans le Néocomien marneux de la fosse vocontienne dans les Alpes françaises externes (B e a u d o i n, 1977), dans le préflysch néocomien de la nappe du Jebel Tisirene (Rif marocain septentrional, inédit) ou dans la zone de Svinița dans les Carpathes méridionales (R u s u, 1970; A v r a m, 1976). Toutefois, dans ces divers cas le remaniement suit de très près la sédimentation initiale, effectuée dans une région très voisine, et les microorganismes sont englobés dans de petits, galets, plus ou moins "dissous" au sein du sédiment final.

Dans le cas des Couches de Lepşa, il s'agit au contraire d'une veritable érosion de couches deposées 50-55 M.A. plus tot, et théoriquement séparées des Couches de Lepşa par une importante colonne sédimentaire. On peut donc soupconner que ce remaniement traduit une phase tectonique ayant amené – lateralement – des couches relativement anciennes à l'affleurement. Des exemples similaires sont connus en divers points de l'Apennin et des Alpes méridionales : ainsi dans les Couches à Rotalipores des unités toscanes de la région de Livourne (Conti et Andri, 1966) ou dans le Cenomanien-Turonien à facies flysch de la région du lac de Varese (Reggiori, 1958). Mais, alors que dans ces exemples la matrice calcaire se différenciait en général assez bien de la micrite plus sombre, remplissant les loricas des Calpionelles – chacune d'elles, protégée par son remplissage, correspondant à un véritable microgalet dans le cas de Couches de Lepsa, sans exception, la micrite de l'intérieur des loricas ne peut pas être différenciée, sous le microscope optique, du ciment micritique senonien : les assises remaniées devaient donc être ici particulièrement tendres, évidemment marneuses et de milieu probablement bathyal. Ces Calpionelles ont en effet des loricas de taille normale et à test fin, telles qu'on en connaît dans des facies de haute mer et d'eaux relativement froides.

Il faut noter que les Calpionelles n'ont pas pu être remaniées "individuellement". Elles ont été primitivement englobées dans de petits galets de micrites ou de marnes, puis progressivement dégagées de ceux-ci Sans exception, on ne retrouve pas les contours de galets primitifs.

IV. Origine paléogéographique des niveaux à Calpionelles

Quant à la source des Calpionelles, nous pensons qu'une origine à partir de l'avant-pays carpathique est la plus plausible en nous basant sur les raisons suivantes :

a) Le matériel ayant cette origine externe, et au sein duquel les schistes verts de type dobrogéen représentent de loin la grande majorité, se trouve à tous les niveaux stratigraphiques dans le flysch externe des Carpathes orientales. Assez souvent, dans les grès et même dans les micrites des Couches de Lepşa, on trouve des fragments anguleux de schistes verts ayant des dimensions allant jusqu'à 4-5 cm ou plus. Donc une

source externe active de détritus existait sans aucune doute durant le dépôt des Couches de Lepşa. En outre la présence, dans ces niveaux ou dans leurs équivalents plus internes, de spécimens remaniés de Dinoflagellés ainsi que de spores et pollens paléozoïques, jurassiques et du Crétace inférieur (Antonescu in Săndulescu et al., 1979) s'explique facilement si ces restes proviennent de l'extérieur des Carpathes, compte tenu du fait que des depôts de ces âges sont connus dans la couverture de la plate-forme.

b) Une source interne (ouest) pour les Calpionelles remaniées nous semble plus douteuse, d'une part parce que le "passage" de tels débris n'a pas été jusqu'à présent signalé dans les assises sénoniennes des nappes plus internes, et d'autre part parce que durant le Crétacé supérieur la "morphologie" en creux du sillon carpathique a dû logiquement empêcher un transport de matériel provenant de ce côté.

c) La présence de galets de micrite contenant des Calpionelles a été signalée aussi dans les Conglomérats de Horăicioara d'âge paléocène, situés au-dessus des Couches de Lepşa (M i c u, 1977, pl. IV) et aussi dans les dépôts détritiques grossiers paléocènes de la nappe de Tarcău (A l e x a n d r e s c u, 1971). Sans exception, dans tous ces dépôts les schistes verts dobrogéens prédominent, montrant sans aucun doute l'origine externe du matériel détritique. La présence des galets à Calpionelles s'explique d'une manière satisfaisante car, dans le cas de ces conglomérats, les galets n'ont pas eu la possibilité d'être "débités" en menus fragments à cause de la grande vitesse de sédimentation.

BIBLIOGRAPHIE

Alexandrescu C. (1971) Studiul flișului cretacic intern și extern dintre valca Bistricioarei și valea Moldovei. Rez. leză docloral, Univ. București, 43 pag., București.

- A v r a m E. (1976) La succession des dépôts tithoniques supérieurs et crétacé inferieurs de la région de Svinița (Banat) tD.S. Inst. geol. geofiz., LXII/3 (1974-1975), pag. 53 71, București.
- Beaudoin B. (1977) Méthodes d'analyse sédimentaire et reconstitution du bassin : le Jurassique terminal-Berriasien des chaînes subalpines méridionales. Thèse doct., Univ. Caen, 339 pag.
- Conti S., Andri E. (1966) Sulla geologia dei Monti Livornesi et suoi riferimenti nel quadro piu generale dell'Appenino Settentrionale. Atti. Ist. Geol. Univ. Genova, vol. 1V, fasc. 2, pag. 265 - 456, 23 pl., Genova.
- Dumitrescu I. (1952) Studiul geologic al regiunii dintre Oituz și Coza. An. Com. Geol. XXIV, pag. 115 - 270, București.
 - (1958) Harta geologică 1:100.000 foaia Birsești.
 - (1963) Noi date asupra flişului miogeosinclinal din munții Vrancei. Asoc. Geol. Carp. Balc. Congr., V (1961) tom IV, pag. 65 - 84, Bucureşti.
 - Joja Th., Săndulescu M., Alexandrescu I., Săndulescu J., Bratu E., Ștefănescu M. (1970) Rapport, les archives de l'Institut de géologie et géophysique, Bucarest.

92

CALPIONELLES REMANIÉES DANS LE CRÉTACE SUPÉRIEUR

- Joja Th., Săndulescu M., Alexandrescu Gr., Săndulescu J., Bratu E., Ștefănescu M., Micu M., Mărunțeanu M. (1971) Rapport, les archives de l'Institut de géologie et géophysique, Bucarest.
- Micu M. (1973) Microfaciesul cu Pithonella ovalis (Kaufmann) in Cretacicul superior din semifereastra Bistriței (Carpații Orientali). D. S. Inst. geol. geofiz. LIN/3 (1972), pag. 99 - 104, București.
 - (1977) Virsta conglomeratelor de Horăicioara. D. S. Inst. geol. geofiz. LVIII/4 (1976), pag. 163 - 169, București.
- Mirăuță O., Mirăuță E. (1964) Flișul cretacic și paleogen din valea Cuejdiului și valea Horaiței. D. S. Com. Geol. L/1 (1963-1964), pag. 131 149, București.
- Reggiori G. (1958) Gli affioramenti cretacci della zona nord-occidentale del Lago di Varese. Ist. Geol. Paleont. Geogr. Fisica Univ. Milano, serie C, pubbl. 105, pag. 27 - 44, Milano.
- Rusu A. (1970) Biozonele de calpionele din Tithonic-Neocomianul zonei Sviniţa. Stud. Cerc. Geol. Geof. Geogr., ser. Geol. 2, tom 15, pag. 489 - 497, pl. I - IV, Bucureşti.
- Săndulescu M., Micu M., Bratu E., Gheța N., Antonescu E. (1979) Rapport, archives de l'Institut de géologie et géophysique, Bucarest.

QUESTIONS

S. Gasiorowski. Remaniement possible des Calpionelles contenues dans les divers calcaires dits de Stramberg.

Réponse: Dans les galets de calcaires de type Stamberg englobés dans divers dépôts conglomératiques plus jeunes que les Couches de Lepşa nous n'avons pas trouvé des Calpionelles.

BIOSTRATIGRAPHISCHE UND FAZIELLE MERKMALE DER "GOSAUFORMATION" IM APUSENI GEBIRGE¹

VON

DENISA LUPU², MARCEL LUPU²

Einleitung

Die, in den letzten Jahren durchgeführten Revidierungen an den Alpinen Gosauschichten (Wiedmann, 1978; Herm et al., 1979, u.a.) haben zu neuen Angaben zur Gliederung und Stratigraphie dieser Schichtfolgen gedeutet, die zu Unterschiede im Vergleich zu der bis jetzt bekannten Untergliederung geführt haben.

Innerhalb der rumänischen Karpaten stellt das Apuseni Gebirge durch seine, hauptsächlich im nördlichen Teil, markannte vorgosauischen Deckenbautektonik, ein Gebiet dar, wo die Gosauablagerungen typisch entwickelt sind.

Die gegenwärtige Arbeit nimmt sich vor, infolge einer kurzen Analyse die biostratigraphischen Merkmale in Augenscheinlichkeit hervorzuheben und auf dieser Basis die Ähnlichkeiten und Unterschiede mit der Ostalpinen-Gosau zu erörtern.

Der Gosau-Begriff und die Biostratigraphie der "Gosau"-Ablagerungen im Apuseni Gebirge

Der Gosau Begriff so wie er noch heute angenommen wird umfasst zwei Elemente : der erste betrifft den transgresiven Charakter Über einen Untergrund dessen Deckenbau in der Vorgosau ischen Phase stadtfand und der zweite betrifft den Schelf öfters litoralen Charakter der Ablagerungen, die durch Rudistenkalke, Inoceramen und Ammonitenmergel, manchmal kohlenführende Ablagerungen, gekennzeichnet sind.

In dem nördlichen Apuseni Gebirge sind beide die oben erwähnten Merkmale vorhanden, in den südlichen Apuseniden gibt es aber keine Deutungen über eine borgosauische Deckentektonik, obwohl auch dort "Gosauablagerungen" anwesend sind.

 ¹ Vorgetragen am 12. Kongress der Karpato-Balkanischen Geologischen Assoziation,
 8 - 13 September, 1981, Bukarest, Rumänien.

² Institut für Geologie u. Geophysik, str. Caransebeş 1, 78344 Bukarest, Rumänien.

 $\mathbf{2}$

Hauptsächlich in den nördlichen Apuseniden bereitet die Korrelation der "Gosauschichten" in den, heute teilweise isolierten, Becken noch immer Schweirigkeiten. Infolge aber des bestehenden faunistischen un mikrofaunistischen Materials worden auch die Rudistenassoziationen in Betracht genommen worden sind, gibt es die Möglichkeit eines Überblicks über die stratigraphische Gliederung sowohl wie die Gesammtentwicklung der Senon-Ablagerungen.

Im nordlichen Apuseni-Gebirge stellt das Roșia — Becken ein günstiges Gebiet dar, für das vergleichende stratigraphische Studium der Senonablagerungen die hier sowohl mergelige wie auch kalkige Rudistenführende Fazien mit denen die sich verzahnen bieten. Die mergelige Fazies liefert von unten nach oben Marginotruncana angusticarinata lapparenti G a n d olfi, G. lapparenti G a n d olfi wie auch Gaudryceras mite (H a u e r) die ein Coniac-Alter nachweisen, dan Inoceramus (Cordiceramus) mülleri recklingensis S e i t z., I. (Cord.). sp. ex gr. I. mülleri P e t r a s c h e c k, I. (Cord.) sp. ex gr. I. platycephalus S o r n a y, I. (Cord.) bueltenensis S e i t z, I. (Cord.) sp. ex gr. I. mülleri recklingensis S e i t z, I. (Cord.) sp. ex gr. I. alpinus T s a g a r e l i, I. (Selenoceramus) selenae S e i t z, I. (Trochoceramus) cf. monticuli F u g g & K o s t n., I. (Endocostea) cf. barabini (M o r t.), I. (Platyceramus) Cycloides n. sp. die dem Santon entsprechen.

In was die mit der erwähnten mergeligen Abfolge sich verzahnenden Rudistenkalk-Abfolge, betrifft, hier wurden drei Rudisten Assoziationen identifiziert (Lupu, 1976); die erste die aus Vaccinites gosaviensis Sonv., Hippurites sarthacensis peroni Douville, H. praecessor Douv., H. Matheroni Douv., H. colliciatus Woodw., Gorianovicia paronai (Wiontzek), Lapeirouseia zitteli Douv., L. pervinguierei (Touc a s), Sauvagesia tehnicostata Polsak, Sphaerulites boreaui Toucas, Praeradiolites caderensis Toucas, P. toucasianus (d'Orb.), P. sinuat u s (d' O r b.), P. fissicostatus (d ' O r b.), Biradiolites alatus n. sp., B. biplicatus n. sp., Plagioptychus paradoxus Matheron die auf ein Santon Alter hinweisen; eine zweite Assoziation die aus Vaccinites sulcatus D e fr., Hippurites colliciatus Woodw., H. nabressinensis Futt., Radiolites subquamosus Toucas, R. gastaldianus Pirona, Neoradiolites matheroni (Toucas), Radiolites aurigerensis Mun. - Chalm., R. squamosus Toucas die auf ein ungefähr ober Santon-unter Campan hinweist und eine dritte Assoziation : Vaccinites sulcatus Defr., V. oppeli Douv., V. vredenburgi K ühn, V. archiaci M un. - Chalm., Radiolites subsquamosus Toucas, Praeradiolites soubtoucasi Toucas, Klinghardtites musculosus (Klingh.), Radiolites angeoides (Lapeirouse) die Campan Alter vertritt.

Im Boroder Becken erscheinen, in einigen Abfolgen, drei Rudisten Niveaus die folgende Assoziationen besitzen: das erste Niveau: Vaccinatus sulcatus Douv., V. gosaviensis Douv., V. oppeli santoniensis Kühn, V. cornuvaccinum gaudryi Munier-Chalmas, V. gosaviensis acicularis Lupu, Hippurites praecessor Douvillé, Praeradiolites caderensis Toucas, Plagioptychus toucasi Matheron, P. maestrei nov., sp., P. paradoxus Matheron, P. borodense Lupu, das Santon Alter besitzt, und das zweite; Vaccinites sulcatus Defr., V. inaequicostatus Münst., V. archiaci Mun.-Chalm., V. oppeli Douv., V. vre-

denburgi Kühn, Praeradiolites aristidis (Mun.-Chalm.), Bournonia aff. africana Douv. die auf ein Campan Alter hinweisen. Das dritte Rudistenniveau das manchmal direkt auf den Vorsenonen Untergrund lagert, besteht aus Colveraia und Joufia die in Assoziation mit Clypeorbis mamillata (Schlumberger), Lepidorbitoides minor (Schlumberger), Simplorbites gensacicus (Leymeire), Siderolites sp. deren Obercampan-Untermaastricht Alter bekannt ist.

Ein Äquivalent des dritten Rudisten-Niveaus befindet sich am oberen Teil einer Senonabfolge im Remeți Becken wo es durch Exemplare von *Pseudopolyconites* vertreten ist. Das stratigraphische Niveau wo sich diese Rudisten befinden wurde als Untermaastricht bezeichnet, gemäss den Angaben aus der Jugoslavischen Litteratur (M i l o v a n o v i c, 1960), sowie infolge neuer Daten welche im Horehronie Gebiet, in den Slowakischen Karpaten (L u p u, 1976) *Pseudopolyconites* Exemplare im Zusammenhang mit *Globotruncana stuarti* (L a p p.), *Gl. linneana* (d'Orb.), *Gl. elevata* (Brotzen), *Rzehakina* sp., *Miliammina* sp., ein Obercampan-Unter Maastricht Alter beweisen.

Im südlichen Apuseni Gebirge sind Gosauablagerungen nur ander nördlichen Flanke der Senon-Abfolge representiert, dort wo sie transgresiv am krystallinen Untergrund lagern.

Die Senontransgression beginnt im westlichen Teil der Süd-Apuseniden mit dem Coniacien. In diesem Gebiet – das Drocea Gebirge-lagert am Krystallinen Untergrund eine detritische Serie die meistens von Sandsteinen und Mergel representiert ist, die aber auch Rudistenkalklinsen einschliesst.

Die Fauna der sandigmergeligen Schichtfolge besteht am unteren Teil von *Plagioptychus arnaudi* Douv. und *Reesideoceras* sp. die als Coniacien vertretend bezeichnet werden können. Die entsprechenden Rudistenkalkriffe besitzen *Hippurites-socialis* Douv., *Vaccinites oppeli felixi* Kühn., *V. giganteus* d'Hombr. Firm., *H. praerenensis* Touc.

Die Schichten mit Inoceramus mülleri recklingensis S e i t z, Baculites aff. asper M a r t on besitzen keine entsprechenden Rudistenriffe im Drocea-Gebirge.

Die Gosautransgression weist in den südlichen Apuseniden einen diachronen Charakter indem sie den Zentral-nördlichen Teil des Gebietes im Ober-Santon-Campan erreicht. Manchmal lagern hier direkt am Krystallinen Untergrund Rudistenriffe mit *Hippurites nabresinensis* Futt., V. oppeli Douv., Lapeirouseia pervinquerei (Toucas), Sphaerulites boreaui Toucas, Sphaerulites sp., Radiolites sp. die als ungefähr der Santon/Campan Wende entsprechen nach dem in den darüber lagernden Mergel Inoceramus balticus Boehn, i. ex gr. monticuli Fug. a Kastn. gefunden worden sind, und welche ein Campan-Alter bezeichnen.

Im nördöstlichen Teil des südlichen Apuseni Gebietes lagert am Krystallinen Untergrund ein Kalk-Niveau das folgende Arten enthält: Vaccinites gosaviensis Douv., V. sulcatus Defr., V. praesulcatus Douv., V. cornuvaccinum gaudry Mun.-Chalm., Praeradiolites sp., Durania sp., Radiolites sp. Die darüber lagernde Sandsteinschicht hat einige Exemplare von Echinocorys vulgaris, Breynius gefördert. Das

darüber lagernde zweite Rudistenkalk-Niveau besitzt Vaccinites oppeli Souv., Hippurites heberti Mun.-Chalm., V. inoequicostatus Münst., V. cornuvaccinum Bronn., V. archiaci Mun.-Chalm., Die zwei Rudistenkalkriffe wurden als Santon und Untercampan bezeichnet.

Gegensätzlich zum nördlichen Apuseni-Gebirge erscheinen in den südlichen Apuseniden keine Rudistenkalke im unteren Maastricht, Zugleich weist die Gesamtenwicklung in den zwei Gebieten wesentliche Unterschiede, indem in den nördlichen Apuseniden die Senon ausschliesslich in "Gosau-Fazies" entwickelt ist, während im südlichen Apuseni-Gebirge die Gosaufazies im inneren des Sedimentationsbecken zu Flysch übergeht und am oberen Teil, Campan-Maastricht, von Flysch bedekt wird.

Einige Bemerkungen über die Rudistenfauna

Infolge des Studiums der ziemlich reichen Rudistenfauna des Apuseni -Gebirges machen sich folgende Daten bemerkbar :

- Im Coniacien und Unteren Santon besteht die Fauna meistens aus zahlreichen Hippuritidenexemplaren, aber nicht reich in Arten. Zwischen den Rudistenarten ist Vaccinites oppeli felix nicht nur im Coniacien bekannt sondern auch im Santon, aber, im allgemeinen, sind die Assoziationen verschieden. Während des Ober-Santons – Unter Campans wird die reiche Anzahl der Exemplare durch eine Verreicherung der Arten ergänzt, hauptsächlich in was die Gattung Hippurites betrifft. Eine reichliche Entwicklung weisen auch die Arten der Gattung Radiolites und einigermassen auch diejenigen der Capriniden.

Die Am Ende Campan-Untermaastricht erscheinenden Rudisten, obwohl sie nicht in grosser Anzahl sind besitzen die Grösse der in der südmediterranen-Provinz bekannten Exemplare.

In was den stratigraphischen Wert der Rudistenassoziationen betrifft machen sich zwei Elemente bemerkbar :

- Die Rudistenassoziationen des Coniacs, Santons, Campans und Maastrichts sind im allgemeinen verschieden. Einige Arten die auch Unterarten besitzen, erscheinen in etwas grösseren Zeitspannen wie z. B. Vaccinites oppeli D o u v., dessen Unterart V. oppeli felixi K ü h n sowolh in Coniac wie in Untersanton erscheint, V. oppeli santoniensis K ü h n im Santon erscheint und V. oppeli oppeli in Campan typisch ist. Arten wie Vaccinites sulcatus, V. gosaviensis D o u v., H. colliciatus W o o d w., V. cornuvaccinum B r o n n, erscheinen sowohl in Santon wie im Campan. Dafür erscheinen andere Arten stratigraphisch begrenzt wie z.B.: V. Giganteus d'H o m b r e F i r m a s für Coniac, Vaccinates chaperi D o u v., für Santon, V. boehmi für Campan.

In mehreren Abfolgen wurde der stratigraphische Wert der Rudistenfauna mit anderen Faunen oder mit Mikrofaunen überprüft.

Trotzdem meinen die Autoren, das in der stratigraphischen Analyse der Senonablagerungen, nur die Rudisten-Assoziationen und nicht einzelne Exemplare in Betracht genommen werden können.

Wenn man die Rudistenfauna der Apuseni-Gebirges als allgemeines in Betracht nimmt, sind die folgenden Beobachtungen möglich :

— in was die Rudistenfauna des Coniacs betrifft erscheinen in den Ostalpen nur die Arten *Plagioptychus paradoxus* Math. und eventuell

4.

11 . - 5

die Coniac Unterart des V. oppeli, V. giganteus, Sonst sind die, im südlichen Apuseni-Gebirge, vertretenden Rudistenarten in der südlichen Provnz bekannt.

Die Santon Rudistenfauna markiert eine grosse Entwicklung der Hippuritiden, Radiolitiden und Capriniden. Im Vergleich mit der bis jetzt bekannten Rudistenfauna der Ostalpen besitzt die Fauna des Apuseni-Gebirges eine reichere Gaztungen und Artenbeschaffenheit. In was die Unter-Campan-Rudisten betrifft, sind die bisher bekannten Arten ungefähr dieselben im Apuseni-Gebirge wie in der Ostalpinen Provinz: hauptsächlich viele gemeinsame Hippuritiden, etwas veniger Radiolitiden.

Aus dem Maastricht der Ostalpen ist bisher nur ein Exemplar von Jouffia (Lupu, 1977) aus Wittersdorf, in kärnthen bekannt. Vom selben Ort ist auch ein Exemplar von Neoradiolites, der von Dr. P. Beck Mannagetta zur Bearbeitung Übergeben wurde, bestimmt worden.

In manchen Fällen lässt sich eine Migration bemerkbar machen, wie der Fall von *H. colliciatus*, der im Apuseni-Gebirge, in den Ostalpen und in Südfrankreich im Obersanton-Untercampan bekannt ist und dafür im der Türkei (C a r a k a b e y, 1959) in Assoziation mit *Jouffia reticulata* B o e h m, im Obersenon erscheint.

Ein besonderer Fall ist auch die Heterochronie der Gattung Pseudopolyconites M i lovanović die in Jugoslavien für ihren stratigraphischen Wert in mittel und Obermaastricht bekannt ist, und welche in den slowakischen Karpaten im Obercampan (Lupu, 1976) und im Apuseni-Gebirge im Obercampan-Untermaastricht erscheint (Lupu, 1976). Dadurch könnte man eine interesante Folgerung erreichen das in diesem Fall die Migration eine in Richtung südwärts war.

Schlussbemerkungen

Im allgemeinen kann die "Gosau"-artige Schichtfolge des Apuseni-Gebirges hauptsächlich im nördlichen Teil als eine typische bezeichnet werden. In der Gesamtentwicklung der Schichtfolge können, in den nördlichen Apuseniden ingressive "Momente" im Obersanton-Untercampan und im Untermaastricht unterschieden werden.

Die Anzahl der Rudistenarten ist im Apuseni-Gebirge grösser als in den Ostalpen infolge eines ausgeprägten mediterranen Einflusses.

the second stand to an

LITERATUR

the second of Albertan and an end

Astre G. (1954) Radiolitides Nord-Pyrénnéems. Mém. S.G.F. 70 N.S. XXXIII 3, 4. Paris. Herm D. (1979) Die süddeutsche Kreide – Ein Überblick. IUGS Series A, 6 Stuttgart, – Kauffman E., Wiedmann J. (1979) The age and depositional environment

of the "Gosau" group (Coniacian-Santonian) Brandenberg (Tirol) Austria. Mill. Bayer. Staatssamml. Paldont. hist. Geol. 19 München.

Karacabey N. (1969) Sur une espèce de Joufia Boehm. Bull of the Min. Expl. Inst. of Turkey 71, Ankara.

61 455/2-1

Kaumanns M. (1962) Zur Stratigraphie u. Tektonik der Gosauschichten. Sitz. Österr. Akad. d. Wiss., I, 171/8, 10 Wien.

- Kühn O. (1947) Zur Stratigraphie u. Tektonik der Gosauschichten. Sitz. Österr. Akad. I Wien.
 - (1967) Rudistenhorizonte als ökologische u. stratigraphische Indikatoren. Sonderdruck aus der Geol. Rundschau 56 Stuttgart.
- L u p u D. (1976) Contributions à l'étude des rudistes senoniens des Monts Apuseni. Mêm. Géol. XXIV București.
 - (1976) Un nouveau radiolitidé: Bystrickya andrusovi du Sénonien sup. de la haute vallée du Hron (Horchronic, Carpates slovaques). Geol. Zbornik Geol. Carpathica 27, 1 Bratislava.
 - (1977) Sur la présence du genre Joufia Bochm dans le Maastrichtien de Wietersdorf-Krappfeld (Carinthie) Autriche. Rev. roum de Géologie 21, Bucureşti.

Milovanović B. (1960) Stratigraphie du Sénonien dans les Dinarides Yougoslaves d'apres les Rudistes. Bull. Soc. de France, 7, 11, Paris.

- Polsak A. (1967) Macrofaune crétacée de l'Istrie méridionale. Paleontologia Jugoslavica 8, Zagreb.
- Pons J. M. (1977) Estudio estratigrafico y paleontologico de los yacimientos de rudistidos del Cretacico sup. del Prepirinco de la prov. de Lerida. Univ. Aut. de Barcelona, Publ. de Geol. Barcelona.
- Wiedmann J. (1978) Eine paläogeographisch interessante Ammonitenfaunula aus der alpinen Gosau (Santon, Becken von Gosau, Oberösterreich). Eclogene geol. Helv. 71,3, Basel.

QUESTIONS

A. Polšak. 1. Y-a-t-il d'autres faciés du Crétacé supérieur dans les Monts Apusen (par exemple, flysch)? Peut-on parler d'une relation entre ces faciés?

2. Quelle est la forme la plus fréquente des formations à Rudistes (biostromes, bioshermes ou barrière-récifs)?

3. Je voudrais accentuer que le même développement du Crétacé superieur et la même faune des Rudistes ont été observés dans la région de Bosnie septentrionale et dans la région entre Zagreb et Fruska gora, c'est-à-dire dans une zone entre la plate-forme Adriatique (Dinarides externes) et la plate-forme pannonienne (ou "Tisia" d'après K o v a c s). Une partie de cette zone se prolonge le plus vraisemblablement vers les Monts Apuseni.

Réponse: Oui, le "Gosau" des Monts Apuseni du Sud est recouvert par des dépôts de type flysch d'âge campanien supérieur-maestrichtien. On a aussi des données d'où il résulte que le flysch remplace à l'intérieur du bassin le "Gosau". Dans les Monts Apuseni du Nord, e "Gosau" est recouvert d'une série hémipélagique, parfois flyschoïde.

2. Plus fréquentes sont les biostromes. Le plus typique bioherme est celui de Valea Neagră - Monts Apuseni du Nord.

T LATELY

APERÇU SUR LA FAUNE DES ÉCHINIDES DANS LA RÉGION CARPATHO-BALKANIQUE EN YOUGOSLAVIE¹

15.8

PAR

JOVANKA MITROVIĆ-PETROVIĆ²

La région des Carpatho-Balkanides yougoslaves coïncide avec la frontière de la Serbie de l'Est.

La faune des échinides la plus ancienne de la Serbie de l'Est est liée au Jurassique moyen, la plus riche est celle du Crétacé inférieur, un peu moins riche est celle du Crétacé supérieur pendant que dans le Paléogène elle n'existe point et dans les sédiments néogènes (miocènes) elle est aussi assez pauvre.

Toutes les espèces des échinides du Jurassique moyen (jusqu'à présent on n'en a déterminé que 5) proviennent d'une même localité, à savoir la localité de Staro Selo (entre la ville de Knjaževac et la frontière bulgare) et toutes témoignent du Bathonien (fig. 1).

Tous les étages du Crétace inférieur abondent en faune des échinides; certaines espèces sont liées strictement aux étages déterminés, d'autres à deux ou à plusieurs étages.

On a déterminé 4 espèces du Valanginien, 11 du Valanginien-Hauterivien ou Néocomien, 11 espèces de l'Hauterivien, 10 espèces du Barrémien, 10 espèces du Barrémien-Aptien, 10 espèces de l'Aptien, 10 espèces de l'Urgonien et une seule espèce de l'Albien.

On n'a pas observe jusqu'à présent des espèces cenomaniennes au cadre du Crétacé supérieur en Serbie de l'Est. Une seule espèce est liée au Turonien. On connaît 7 espèces du Sénonien et dans la plupart des cas il s'agit du Maestrichtien.

La faune complète des échinides du Néogène appartient au Miocène moyen et provient de deux localités : celle des environs de Golubac (8 espèces) et l'autre de Despotovac (3 espèces) (fig. 2).

On connaît jusqu'à présent 81 espèces en Serbie de l'Est, dont 34 appartiennent aux échinides réguliers, y compris les espèces déterminées uniquement sur la base des piquants et 47 irréguliers. Tous les échinides réguliers ont l'âge crétace inférieur.

¹ Note présentée au 12eme Congrès de l'Association Géologique Carpatho-Balkanique, 8 - 13 septembre 1981, Bucarest, Roumanie.

² Faculté de mines et géologie, Kamenicka. 6, 11000 Beograd, Yougoslavie.

Fig. 1. - Carte de la Serbie orientale avec l'indication des localités fossilifères.

IGR
Examinée en totalité, la faune a une grande importance biostratigraphique et paléoécologique. En même temps les échinides réguliers sont au point de vue stratigraphique assez indifférents, d'où leur importance biostratigraphique est sensiblement moindre par rapport aux échinides irréguliers. Pour les interprétations paléoécologiques, pourtant, tous les deux groupes ont une même valeur.

Fig. 2. - Le nombre des espèces dans le cadre de certains étages du Jurassique, du Crétacé et du Miocène en Scrbie de l'Est.

Dans mes travaux précédents, j'ai déjà donné les listes des espèces et des associations les plus typiques pour chaque étage du Crétacé inférieur et supérieur et du Miocène (Mitrović-Petrović 1966, 1972, 1976, 1977); cette fois-ci je ne donnerai qu'un aperçu des espèces les plus importantes au point de vue biostratigraphique.

Cette fois-ci je veux indiquer les cas ou les échinides ont joué le role décisif pour la détermination de l'âge des sédiments dans certaines localités de la Serbie de l'Est.

Le genre *Clypeus* est lie exclusivement aux sédiments jurassiques. Il apparaît en Bajocien, il atteint sa culmination en Bathonien et en Callovien, en Oxfordien il devient très rare (dans chacun de ces étages on ne connaît qu'une espèce du genre *Clypeus*) et il n'y en a aucune trace en Kimméridgien at en Tithonique.

Cette petite expension verticale d'une part et les caractéristiques morphologiques spécifiques de l'autre part, qui rendent possible la détermination générique d'après un seul fragment, lui donnent le statut d'un fossile très caractéristique et important.

– Institutul Geologic al României

J. MITROVIC-PETROVIC

Miocène moyen	Scutella subrotundata Lam., S. vindobonensis Lbe., Amphiope bioculata Desm., Schizaster desori Wr., Brissopsis genei /Sism./Des.						
Sénonien	Echinocorys ovalus Lam., Clypeolampas ovalus d'Orb. Guellaria angladoi Gauth.						
Turonien	Hemiaster sannio Lamb.						
Albien	Discoidea conica Des.						
Urgonien	Holeclypus macropygus Des., Salenia grasi Cott., Codechinus rolundus Des.						
Aptien	Codechinus rotundus Des.						
Barrémien	Heteraster oblongus d'Orb.						
Hauterivien	Toxaster retusus Lam.						
Valanginien	Cidaris pretiosa Des., C. pustulosa Gras., Magnosia lens Des.						
Jur.moyen Bathomien	Clypeus sinantus Leske, Cl. boblayei Mich., Cl. mülleri Wrig., Cl. davosianus Cott.						

Tableau synoptique des espèces les plus importantes au point de vue biostratigraphique

C'est ainsi, sur la base de cinq espèces de ce genre, Clypeus mülleri W r. Cl. davosianus C o t t., Cl. sinantus L e s k e, Cl. boblayei M i c h ž, et Cl. ploti K l e i n, qu'on a déterminé l'âge des sédiments à Staro Selo, (Bathonien), tandis que d'après tous les devanciers ils étaient indiqués comme jurassique moyen ou bajocien-bathonien sans possibilité d'une analyse plus précise (S i k o s e k, 1952).

Dans le cadre du Crétace inférieur, en étudiant les échinides de Suva planina on a constaté que les sédiments antérieurement traités comme hauteriviens (P et k o v i c, 1930) étaient d'un âge plus jeune, barrémien-aptien, quoiqu'il y ait des espèces qui proviennent de l'Hauterivien. C'est le genre *Toxaster* qui a joué ici le rôle décisif avec plusieurs espèces et qui est découvert dans notre pays pour le première fois il y a quelques années sur les terrains de Suva planina.

Le genre *Echinocorys* a joué un rôle très important au Crétacé supérieur. Il apparaît en Turonien et disparaît en Paléocène. L'espèce la plus connue et la plus répandue de ce genre est *Echinocorys ovata* L e s k e. Elle indique toujours le Campanien, c'est pourquoi sa présence fréquente en Serbie de l'Est est très importante parce que l'âge des sédiments d'où elle provient, sur la base de l'autre macrofaune, est traité plus largement (comme sénonien) ou bien l'âge est déterminé pour la première fois sur la base de la macrofaune (le village Štrbac dans le synclinal Tupiznica-Knjaževac— J a n k i č e v i ć et M i t r o v i ć, 1973).

La faune des échinides du Miocène moyen de la Serbie de l'Est n'a pas une contribution importante pour les recherches biostratigraphiques, parce qu'on a trouvé la faune des mollusques beaucoup plus riche dans les localités d'ou elle provient.

104

. 4

ECHINIDES	DANS	LA	RÉGION	CARPATHO-BALKANIQUE
-----------	------	----	--------	---------------------

Sauf quelques caractéristiques paléoécologiques communes, on a remarqué que les conditions et le mode de vie des échinides sont totalement différents d'une époque géologique à d'autre.

Les espèces jurassiques sont peu nombreuses et liées au fond sableux de la région neritique peu profonde.

On a fait l'analyse des caractéristiques morphologiques de nombreux échinides crétacés et de la faune accompagnante ainsi que l'analyse des sédiments d'ou la faune provenait et on a conclu :

— Les échinides crétaces peuplaient surtout l'eau peu profonde (la zone littorale et néritique) tandis qu'ils étaient plus rares dans les eaux plus profondes.

— Dans la région neritique ils peuplaient presque toutes les catégories du fond de la mer : le fond rocheux (Cidaris, Acropeltis, Codechinus, Psammechinus, Salenia, Codiopsis, Orthopsis, Magnosia etc.), les récifs (Salenia, Psammechinus), les environs des récifs (Holectypus Pyrina), le fond sableux (Holectypus, Pygaulus, Discoides), le fond argileux (Epiaster, Toxaster, Hemiaster).

Parmi les habitants du fond rocheux et des récifs, certains représentants supportaient bien les battements forts de l'eau (Cidaris, Codechinus, Psammechinus, Salenia etc.). L'adaptation à ce mode de vie se reflète soit dans le nombre augmenté des pieds ambulacraires sur la face orale à l'aide desquels ils s'attachaient étroitement aux roches (Codechinus, Psammechinus), soit dans les carapaces basses et hémisphériques qui ne surpassaient pas beaucoup la roche (Salenia), soit dans les piquants très forts comme moyen de défense (Cidaris). Les autres représentants cherchaient l'eau calme pour leur existence et c'est pourquoi ils occupaient souvent les cavités et les crevasses sur les écueils saillants ou sur les récifs (Codiopsis, Orthopsis, Magnosia). Ce qui caractérise ces genres se sont les hautes carapaces qui n'ont pas le nombre augmenté de pores ambulacraires de la face orale.

Les habitants les plus fréquents du fond sableux sont : Holectypus, Pygaulus, Discoidea etc. Ce sont les échinides irréguliers qui rampent lentement sur le fond sableux ou ils s'enfouient en partie.

Les genres *Epiaster* et *Hemiaster* sont les habitants des eaux plus profondes et du fond argileux. Leur adaptation à ce mode de vie se reflète sur les petites carapaces fragiles, le labrum bien développe, les ambulacres pourts qui sont enfoncés profondément dans leurs carapaces et dans les fascioles bien dévelopées.

— Les échinides crétacés se trouvent le plus souvent en association avec les Polipiers, les Brachiopodes, les Bivalves (spécialement avec les Pachiodontes) et avec les Gastropodes. C'est une association typique pour les eaux peu profondes qu'on rencontre dans presque toutes les localités examinées. Ce n'est que rarement qu'on trouvait les échinides avec les Ammonites et les Belemnites (par exemple dans les sédiments valanginiens-hauteriviens de Stara planina).

- La température de l'eau au cours du Crétacé était assez élevée urtout pendant la formation des récifs au Crétace inférieur ainsi qu'au Crétacé supérieur.

Les échinides miocènes de la Serbie de l'Est proviennent de deux localités et leurs associations sont tout à fait différentes, par suite de différents types des sédiments d'où ils proviennent.

La faune de Golubac est plus riche (3 genres avec 8 espèces). Le genre Scutella prédomine avec 5 espèces. Amphiope occupe la deuxième place avec deux espèces, tandis que le genre Echinolampas n'est représenté que par une seule espèce. Il est intéressant qu'on n'a constaté aucune espèce du genre Clypeaster qui est d'ailleurs très fréquent dans les sédiments du Miocène moyen non seulement dans les autres régions de la Serbie et de l'Yougoslavie, mais il est aussi un des genres prédominants dans le Miocène moyen de l'Europe tout entière. On peut facilement expliquer son absence par le caractère des sédiments. Dans les environs de Golubac (village Vojilovo) la faune des échinides est trouvée dans les conglomérats, tandis qu'on rencontre le Clypeaster le plus souvent sur les fonds sableux et sur les récifs.

Pour les genres Scutella et Amphiope sont caractéristiques les grandes carapaces basses et les faces orales tout à fait plates. Les sillons ambulacraires sur la face orale sont ramifiés ce qui indique un nombre augmenté des pieds ambulacraires. Toutes ces caractéristiques morphologiques indiquent la vie dans l'eau peu profonde et agitée. Les carapaces basses hémisphériques qui ne dépassent qu'à peine la surface des sediments avaient résisté plus facilement aux battements des vagues que les carapaces hautes. Les surfaces basales plates et solides, le nombre augmenté des pores ambulacraires sur la face orale empêchaient le renversement des échinides sous l'action des vagues.

Sur la base de tout ce qui est dit on peut conclure que les sédiments des environs de Golubac étaient formés dans la zone littorale dont la profondeur ne dépaissait pas une dizaine de mètres, et que l'agitation de l'eau était forte. Mortensen (1948) et Cottreau (1913) sont d'une même avis. D'après Mortensen les Scutellidae récents vivent dans la zone de flux et de reflux, de façon qu'elles peuvent restées sur le sec pendant la marée. Elles préfèrent le fond sableux et couvrent ses carapaces des grains de sable. Cottreau cite aussi que les genres *Scutella* et *Amphiope* sont strictement littoraux et peuplent les plages avec les différents élements détritiques : les conglomérats, les sables aux grains petits et aux grains gros. Ici l'eau est très agitée et ne dépasse pas la profondeur de 5 - 6 m.

En communauté avec les échinides on a trouve une faune des mollusques néritiques très riche.

L'association des échinides du Miocene moyen de Despotovac a un caractère tout à fait différent. On n'a déterminé que deux genres de cette localité : Schizaster et Brissopsis (le premier avec deux espèces, le second avec une seule). La faune provient des argiles gris-bleuâtres. Schizaster et Brissopsis appartiennent aux Spatangoida. Leurs carapaces sont proportionnellement petites, minces, le labrum bien developé, les ambulacres très raccourcis et enfoncés dans le test, les fascioles nombreuses et bien développées.

Tout cela indique la vie sur le fond argileux où ils s'enfoncaient partiellement ou totalement et témoignent qu'ils sont limnivores (labrum bien développé). L'eau était relativement calme (la présence des fascioles,

les endroits où s'attachaient les clavules dont le rôle étaient de nettoyer le test des différents grains et impuretes.) Chez les habitants des eaux agitées les clavules ne sont pas nécessaires. Cette région était certainement plus profonde que la région de Golubac, mais pas bathyale, étant donné que dans les argiles avec des échinides on trouve les traces du charbon.

La faune complete des échinides du Miocene de la Serbie de l'Est a un caractère tropique-subtropique.

Sur les terrains de la Serbie de l'Est il n'y avait pas des possibilités pour les recherches taphonomiques.

Conclusions. La faune des échinides des Carpatho-Balkanides yougoslaves est très riche. On a détermine jusqu'à présent 81 espèces (34 échinides réguliers et 47 échinides irréguliers).

La faune provient des sediments jurassiques, cretaces et miocenes. Son importance biostratigraphique est grande et grâce à cela l'âge des sediments dans certaines localités est détermine pour la première fois ou bien on a fait la révision des opinions précedantes concernant l'âge.

L'analyse morphofonctionnelle de la faune des échinides et de la faune accompagnante, ainsi que l'étude des types des sediments d'ou la faune provient ont rendu possible par la reconstruction de l'ancien byotope une reconstruction réussie des conditions et du mode de vie des échinides au cours du Jurassique, du Crétacé et du Miocene.

BIBLIOGRAPHIE

- Cottreau J. (1913) Echinides neogènes du bassin méditerranéen. Ann. de l'Insl. Océanographique. Paris.
- Jankičevic J., Mitrović J. (1973) Novo mesto nalaska chinidske vrste Ananchytes ovata Lam. Geol. anal. Balk. pol. knj. XXXVIII. Beograd.
- Mitrović-Petrović J. (1966) Kredni i miocenski ehinidi Srbije. Geol. anal. Balk. pol. knj. XXXII Beograd.
 - (1972) Značaj pojedinih chinidskih rodova i vrsta za resavanje stratigrafskih problema naše zemlje. VII Kongres Geologa SFRJ održan u Zagrebu 1970. Zagreb.
 - (1972) Značaj ehinidskog roda Clypeus Leske za izdvajanje i rasclanjavanje srednje jure ločne Srbije. Zapis. Srp. geol. drustva za 1968, 1969 i 1970. /sapoštenje održano 1969/ Beograd.
- (1975) Importance biostratigraphique et paléoécologique des échinides du crétace inferieur dans la Serbie de l'Est. Carp. Balk. Geol. Assoc. Bratislava 1974. Proceed. of the X Congress, Section I, Bratislava.
 - (1976) Prikaz mezozojske ehinidske faune Srbije s posebnim osvrtom na njen biostratigrafski i peleoekološki značaj. 8 Jugoslavenski geološki kongres 2. Ljubljana.
 - (1977) Kredni ehindi Stare planine. Geol. anal. Balk. pol. knj. XLI. Beograd.
- Mortensen T. (1948) A monograph of the Echinoidea. Tom IV3 Clypeastroida, Aracnoididae and Scutellinidae. Copenhagen.
- Petkovic K. (1930) Geološki sastav i tektonski sklop Suve planine. Srp. Kralj. Akad. Posebna izdanja knj. LXXVI. Prirod. i mat. spisi knj. 21. Beograd.
- Sikošek B. (1952) Stratigrafski i tektonski odnosi u oblasti izmedju Malog Izvora, Novog Korita i Kadibogaza u Istočnoj Srbiji. Zbornik radova SAN XXIII. Geol. Inst. SAN, kni. 4. Beograd.

a ta mana a seconda a

.

- 90. 00

DINOSAURIENS ORNITHOPODES DANS LES BAUXITES NÉOCOMIENNES DE L'UNITÉ DE BIHOR (MONTS APUSENI)¹

PAR

DAN PATRULIUS, FLORIAN MARINESCU², ALBERT BALTRES²

and another of the second

L'une des découvertes les plus remarquables faites dernièrement en territoire carpathique est l'identification d'ossements de dinosaures dans une bauxite néocomienne située au coeur même de l'édifice des Carpathes (fig. 1). Sauf les Monts Apuseni, le seul endroit des chaînes alpines péritéthysiennes où l'on ait encore signalé la présence de dinosaures dans une formation néocomienne se trouve au sud du Grand Caucase, sur le territoire du Bloc Géorgien. Mais dans ce dernier cas il s'agit seule-

Fig. 1. – Emplacement du gisement à dinosaures de Brusturi (Monts Pădurea Craiului); en blanc- unité de Bihor; hachuressystème de nappes de Codru; pointillé-couverture et formations

intrusives post-nappe.

ment de traces de pas tridactyles (Sathapliosaurus), imprimées sur un banc de dolomie vacuolaire (faciés lagunaire). Le gisement des Monts Apuseni se trouve localisé dans la partie centrale du plateau karstique de Pădurea Craiului, à l'ouest de Valea Mnierei (Fig. 1). On y accède par

¹ Note présentée au 12 ême Congrès de l'Association Géologique Carpatho-Balkanique 8 - 13 septembre 1981, Bucarest, Roumanie.

² Institut de Géologie et Géophysique, str. Caransebeş 1, 78344 Bucarest, Roumanie.

le système de galeries de la Mine Brusturi I. La bauxite à dinosaures se trouve logée dans une cavité profonde des calcaires récifoïdes tithoniques, qui y constitue le substratum d'une bauxite diasporique massive (lentille 204). Un premier inventaire de la faune a été dressé par Jurcsac et Popa (1978).

La coupe de la double lentille 204 comporte de bas en haut : 1, calcaire blanc massif du 'Tithonique (calcaire de Cornet) ; 2, calcite largement cristallisée (spathite) avec, au sommet, une zone décimétrique noirâtre, légèrement bitumineuse; 3, bauxite boehmitique rouge-brun constituée par une alternance de couches arénitiques ou arénitiques — ruditiques et de couches pélitomorphes; 4, couche centimétrique à submétrique d'argile kaolineuse, jaunâtre ou rougeâtre, localement avec un peu de boehmite; 5, spathite; 6, calcaire de Cornet; 7, bauxite diasporique rougebrun, arénitique, massive; 8, calcaire micritique noirâtre à characées et ostracodes (lacustre); 9, calcaire gris à gastéropodes saumâtres; 10, calcaire gris à pachyodontes (Barrémien).

Les calcaires du Tithonique y sont traverses par deux systèmes de fissures subverticales $(35 - 55^{\circ})$ et respectivement $130 - 150^{\circ}$ générees au cours des mouvements qui ont conduit finalement à l'émersion de la plate-forme carbonatée jurassique.

La coupe décrite plus haut met en évidence deux étages bien individualisés du karst néocomien. La cavité de l'étage inférieur est de forme discoïdale; son diamètre atteint 45 m, la hauteur en est de 7 m au moins. Tant le plancher que la voute sont tapissés par une couche épaisse de spathite. La bauxite boehmitique à ossements de dinosaure et l'argile qui la surmonte occupent la cavité centrale de cette énorme géode. L'épaisseur des sédiments de remplissage est de 3 m au moins.

Les contributions individuelles des auteurs de cet article concernent : la stratigraphie des bauxites de l'unité de Bihor (P a t r u l i u s), les traits sédimentaires et la pétrographie du gisement à dinosaures de la lentille 204 (A. B a l t r e s), la faune du même gisement et la mise en place des ossements (F. M a r i n e s c u).

Stratigraphie des bauxites de l'Unité de Bihor

Dans la succession des terrains mésozoïques de Pădurea Craiului, le niveau le plus bas où affleurent des bauxites se situe à la limite entre le calcaire massif récifoïde de Farcu et le calcaire oncolithique d'Albioara (faciés lagunaire) c'est-à-dire à la proximité de la limite Kimméridgien-Tithonique. Il s'agit d'occurrences très rares, centimétriques à décimétriques, d'une bauxite peu consistante, blanchâtre ou rose, caractérisée par une forte teneur en aluminium (\pm 70 % Al₂O₃). Toutefois on ne saurait préciser pour le moment s'il s'agit d'un dépôt précédant la sédimentation du calcaire d'Albioara, ou bien d'une infiltration post-jurassique de matériel alitique le long d'un contact de discontinuité lithologique, donc susceptible d'avoir été soumis à l'érosion karstique. Dans le territoire où le calcaire d'Albioara est substitué par le calcaire de Cornet ce dernier comporte à sa partie sommitale, sur quelques dizaines de mêtres d'épaisseur, un système complexe de cavités karstiques, dont on distingue au moins trois générations, chacune étant caractérisée non seulement par une

morphologie particulière, mais aussi par la nature de ses depots de remplissage.

Par sa faune, qui présente des affinités étroites avec celle de Stramberg, le calcaire de Cornet est daté comme tithonique. Pas loin de la lentille 204, à Cornet (au nord), ou à Secătura et Osoiu (à l'est de Valea Mnierei), le mur même des gisements de bauxite diasporique a livre Phaneroptyxis staszycii (Zeusch.) et d'autres nérinéidés, Plegiocidaris cervicalis (Agas), P. blumenbachi (Münst.), Rhabdocidaris copeoides (Agas.), Sphaerotiaris quenstedti (Merian), Balanocrinus subteres (Münst.), Isocrinus astralis (Quenst.), des espèces de Millericrinus, Burdigalocrinus, Thiollericrinus, des coraux très abondants, des bryozoaires (Neopora), de rares ammonites dont Neoglochiceras pseudocarachteris (Favre), espèce connue du Tithonique moyen. Ailleurs (Dealu Ana) les memes calcaires contiennent à leur sommet des Ellipsactinia. Le calcaire de Cornet est également représenté dans l'unité de Valani (système des nappes de Codru), mais là au facies graveleux et bioclastique, avec Clypeina jurassica F a v r e localement en abondance, se trouvent associes des calcaires pelsparitiques à Calpionella alpina Lorenz (Patrulius, 1971). Il en résulte que la sédimentation des bauxites logées dans le calcaire de Cornet a eu lieu après le Berriasien inferieur (Zone Euxina). En ce qui concerne les calcaires qui constituent le toit des bauxites diasporiques, leur âge reste conjectural. Un âge Barrémien inférieur pour la base "du calcaire à pachyodontes inferieur" est indiqué par la présence de biostromes à Requienia minor Douv. À Cornet le premier niveau à Requienia se trouve situé a environ 10 m au dessus du contact avec les bauxites. Il n'est donc pas exclu que "le calcaire à characées" et "le calcaire à gastéropodes", qui reposent directement sur les bauxites, appartiennent au Neocomien.

Après l'émersion intra-ou post-berriasienne, qui a affecté la plateforme carbonatée de Bihor (y compris l'unité de Vălani), une première phase d'érosion karstique a généré des cavités superficielles largement béantes et à contour plus ou moins lobé, à parois souvent verticaux, parf**o**is même surplombantes (fig. 2, A). Ces cavités ont éte comparées par P o p et M î r z a (1977) à celles du karst phréatique de Cuba, dénommées "caguanes". Leur remplissage est constitué par de la bauxite massive arénitique, diasporique et hématitique, rarement avec un peu de boehmite à la partie sommitale (P a p i u et al., 1970).

La deuxième génération du karst néocomien comporte de rares cavités profondes, discoïdales ou en forme d'entonnoir renversé, comparables dans une certaine mesure aux cavités de type Aston du karst phréatique (fig. 2, B). Leur remplissage est constitué de spathite (origine vadeuse), de bauxite litée boehmitique et hématitique, arénitique ou pelitomorphe (sédiments d'origine lacustre), d'argile kaolineuse blanche ou jaunâtre, souvent avec un peu de boehmite, de marnes à ostracodes de grande taille et de calcaire détritique ocre à débris remaniés d'échinodermes, par endroits aussi à gastéropodes d'eau douce (famille de Cyclophéridés). Les occurrences de roches carbonatées lacustres sont fort rares et minuscules (Dealu Brusturi, Dealu Secătura).

La dernière phase de karstification néocomienne est caractérisée par la formation d'un karst fissuraire, dont le remplissage comporte prin-

3

Institutul Geologic al României

¹¹¹

cipalement des argiles kaolineuses blanchâtres ou roses, par endroits aussi boehmitiques et avec de petits granules disseminés de boehmite (fig. 2, C). Les argiles kaolineuses et boehmitiques de la troisième génération de sédiments karstiques se trouvent souvent infiltrées à la périphérie des

Fig. 2. – Modèle d'évolution du système karstique néocomien sur le territoire de l'unité de Bihor. A) l^{ère} génération de karst phréatique et l^{êre} génération de bauxite néocomienne : arénitique, massive, principalement diasporique et hématitique ; la cavité discoïdale à droite comporte des brêches calcaires provenant du toit ; B) 2^{ème} génération de karst phréatique, ensuite vadeux : profond, à cavernes discoïdales tapissées de spathite ; pénétration des dinosaures sur le territoire de l'unité de Bihor, où il y a des lacs intermittents à vase bauxitique ; C) 2^{ème} génération de bauxite néocomienne : arénitique et pélitomorphe, litée, boehmitique et hématitique à dépôts calcaires associés ; les ossements de dinosaures et les vases lacustres sont entrainés dans les cavernes, par les eaux de crues saisonnières ; D) 3^{ème} génération de karst néocomien ; peu évolué, fissuraire ; E) 3^{ème} génération de dépôts karstiques néocomiens : argiles kaolineuses, en partie aussi boehmitiques, infiltrées à la périphérie des corps de bauxite de la première et de la deuxième génération. Les flèches indiquent le mouvement relatif de la plate-forme carbonatée ; les traits interrompus, la position relative du niveau phréatique (ph.)-

corps de bauxite massive diasporique (Patrulius in Ianovici et al., 1976). Elles constituent aussi le toit de la bauxite à ossements de dinosaures de la lentille 204, ou le remplissage des fissures qui ont affecté cette bauxite.

4

Institutul Geologic al României

Une bauxite plus récente du territoire de l'unité de Bihor se trouve logée dans une crevasse très profonde des calcaires barrémiens à pachyodontes (Patrulius, Iosof, 1974).

Stratonomie, petrographie et minéralogie³ du gisement

La bauxite boehmitique de la lentille 204 Brusturi est formée par une alternance de couches arénitiques ou arénitiques-ruditiques granoclassées, épaisses de 4 - 10 cm, et de couches pélitomorphes ayant jusqu'à 30 cm d'épaisseur (Fig. 3). Le classement du matériel arénitique est

> Fig. 3. - Sequence de la bauxite à dinosaures dans la lentille 204 de Brusturi (étage inférieur) : 1, bauxite arénitique-ruditique ; 2, bauxite pélitomorphe; 3, gros lithoclastes de bauxite; 4, argiles rouges et jaunes au toit des bauxites; 5, lentille de spathite; 6, ossements de dinosaures; 7, Characés; 8, lithoclastes de calcaires jurassiques.

1 2

3

4

5 6

7

soit simple et incomplet, car il n'y a pas de passage au matériel pélitomorphe du toit, soit multiple et récurrent représente par une alternance de lits détritiques subcentimétriques et de bandes millimétriques pélitomorphes. Les surfaces de litage sont planes. On n'y observe aucune trace d'érosion interstratale. Le matériel arénitique est représenté principalement par des lithoclastes plus ou moins arrondis de bauxite boehmitique riche

5

en fer. Les clastes à structure concentrique doivent leur zonation aux processus de diagenèse (pseudooïdes avec pellicule de boehmite ou de kaolinite enveloppant un novau de hématite). De rares fragments de calcaires du Jurassique supérieur viennent s'ajouter au matériel bauxitique. Le liant des clastes est un ciment sparitique, ou une matrice de bauxite pélitomorphe. Le matériel ruditique comporte des clastes plus grossiers de bauxite boehmitique, des fragments d'os et une catégorie très spéciale de "galets", dont le diametre est de 1 à 4 cm. Environ 90 % de ces "galets" sont des calcaires, le reste des roches cristallines (quartz, micaschiste, serniphite, "porphyre quartzifere"). Les éléments calcaires sont de trois sortes : calcarénites du Tithonique à bioclastes d'échinodermes ; calcaires micritiques du Neocomien à characées et ostracodes; fragments plus ou moins bien roulés de fossiles jurassiques (coraux et bivalves). Le diamètre des "galets" calcaires est de 1-2.5 cm. Dans la plupart des cas leur surface présente un relief irregulier, avec des bosses et des creux témoignant d'une corrosion acide, qui dans le cas des calcaires bioclastiques du Jurassique est pénétrative, mise en évidence par un réseau complexe de canalicules imprégnés de matériel ferrugineux. Selon toute vraisemblance, ces galets qui appartiennent à une catégorie granulométrique restreinte sont des gastrolithes.

La bauxite pélitomorphe présente une texture très uniforme. On y remarque seulement des petits amas diffus de clastes arenitiques riches en hématite. Cette bauxite contient en outre, à la partie inférieure de la séquence, des fragments de characées (principalement tiges) et de très rares gastéropodes de petite taille. Les ossements de dinosaures, souvent parfaitement conservés, se trouvent disseminés principalement dans les couches pélitomorphes.

Les principaux minéraux constitutifs des bauxites à ossements de dinosaures sont la boehmite, l'hématite et la kaolinite avec les proportions respectives suivantes (à titre d'exemple) : 69%, 16%, 15% dans une variété arénitique; 50%, 28%, 22% dans une variété pélitomorphe. Dans la couche d'argile qui surmonte la bauxite le pourcentage des mêmes minéraux est 16%, 10%, 74%.

Composition de la faune et mode de gisement des ossements

L'inventaire dressé par Jurcsak et Popa (1978) comporte, à coté d'un Iguanodon probable, de nombreux restes attribués à Dryosaurus, des dinosaures carnivores (Coelurosauridae et Carnosauridae), ainsi que des crocodiliens marins (Teleosauridae !). Cette liste est à reconsidérer de façon radicale. Quoique plusieurs milliers de pièces aient été récoltés, principalement vertèbres et métapodiums, il n'y a aucune dent ou phalange terminale (grifféale) de dinosaure carnivore, aucune plaque dermique ou vertèbre qu'on puisse attribuer avec certitude à un crocodilien. En jugeant d'après les dents, les vertèbres et les nombreux phalanges terminales plates provenant de la lentille 204 seuls des iguanodontidés s'y trouvent représentés. Les restes le mieux conservés indiquent la présence du genre *Camptosaurus*, ou d'une forme étroitement apparentée, à dents pourvues de crénelures fines. Le fait que les vertèbres sacrées qu'on y a trouvées sont moins pincées que ceux d'Iguanodon et habituellement

114

Institutul Geologic al României

non-soudées plaide également pour l'appartenance de la plupart de ces restes à *Camptosaurus*. On ne saurait toutefois exclure la présence d'*Iguanodon* à côté d'un iguanodontidé à caractère plus primitif. Il s'agit donc d'une association sinon monotypique, en tout cas oligotypique. En jugeant d'après les dimensions des métapodiums (phalanges unguéales de 4 - 5cm, métatarsiens ou métacarpiens de 8 - 10 cm), les plus grands spécimens ne devaient pas dépasser 3 m en longueur.

En ce qui concerne le mode de gisement des ossements, il faut specialement souligner les particularités suivantes : 1, les ossements se trouvent pour la plupart disseminés dans la bauxite pelitomorphe; ils sont très rares dans les couches arenito-ruditiques; le grand axe des pieces est habituellement parallèle aux surfaces de litage; 2, des os en connexion sont d'occurrence exceptionelle (dans un seul cas, deux vertebres sacrées); 3, les dimensions des pièces individuelles ne dépassent pas généralement 10 cm (15 cm au maximum). Dans cette categorie dimensionnelle rentrent quelques exemplaires fragmentaires d'os longs appartenant à des specimens juveniles. Ils sont d'espect gracile, mais toutefois ne possedent pas la structure pneumatique caractéristique des Coelurosauriens. Des os longs appartenant à des spécimens adultes on ne trouve que des épiphyses brisées. Il faut noter que non seulement les os longs entiers de grands spécimens (humérus ou tibia de 40 cm, radius ou humérus de 30 -35 cm) manquent au tableau, mais aussi les pieces completes de la ceinture pelvienne (iléon ou ischion de 40 cm de long); 4, bon nombre de pièces sont fragmentaires. Il ne s'agit pas seulement d'os de grande taille, mais aussi de corps vertebraux amputes de leur arc neural. Par contraste, à coté des vertebres brisées, on trouve d'autres qui ont conservé leur arc neural complet, quoique les apophyses en soient fort délicates, surtout celles des vertebres caudales. Dans le cas de beaucoup de pièces le cortex a été partiellement enlevé de sorte que la matrice bauxitique fait corps commun avec le remplissage du tissu spongieux; 5, en jugeant d'après le nombre des vertebres recoltées jusqu'à présent au moins 30 individus ont participé avec leurs pièces squelettiques à l'accumulation d'ossements de la lentille 204.

De ces faits d'observation il résulte en première instance que les ossements du gisement de Brusturi proviennent d'un "cimetière" situé en bordure d'un lac (lieu d'abreuvage probable) dont les sédiments étaient principalement constitués de boues bauxitiques; que les squelettes étaient complètement dissociés avant que leurs pièces soient mélangées à ces boues et transportées ensemble dans la cavité sousterraine par des courants à faible pouvoir de traction, probablement au cours de crues saisonnières. Reste à expliquer pourquoi beaucoup d'os sont brisés et pourquoi les dimensions des pièces ne dépassent que très rarement 10cm. Une sélection des ossements peut s'expliquer par le faible pouvoir de traction des courants qui les ont entrainés, mais dans ce cas il faut faire appel à un autre mécanisme pour rendre compte du fait que beaucoup de pièces ont été brisées avant la mise en place finale. C'est à l'activité des reptiles nécrophages qu'on vient à penser en premier lieu, non nécessairement à des dinosaures carnosauriens, mais à des bêtes capables de briser les dia-

physes à cortex épais des os longs pour en extraire la moelle et si friands de cartilages et de ligaments qu'ils ont finalement réussi à enlever une partie du cortex mince qui enveloppe le tissu spongieux des épiphyses, spécialement vertébrales. À part le fait qu'on n'a pas trouvé jusqu'à présent une telle bête, cette explication s'accorde mal avec le fait que dans le gisement en question il y aussi beaucoup de pièces fragmentaires de grands os plats qui ne semblent pas avoir représenté un aliment enviable.

Mais disons que dans la nature il y en a pour tous les goûts, et que notre nécrophage hypothétique brisait tout ce qui était recouvert de tissu comestible pour rejeter ensuite les débris inutilisables.

Le problème le plus ardu que pose la présence de dinosaures neocomiens sur le territoire de l'unité de Bihor, c'est-à-dire au coeur même de l'édifice des Carpathes, concerne la voie de migration que ces bêtes ont suivi pour y arriver.

À partir de la plate-forme nord-tethysienne les obstacles qui interdisaient l'accès au Néocomien étaient multiples : fosse vocontienne, fosse du flysch rhéno-danubien, fosse piénine, tout le territoire de la plateforme moesienne. Des obstacles en creux pas moins formidables couvraient la marge sud-tethysienne : le(ou les) fosse(s) du flysch de Jebel Tisirene (Maroc) et de Monte Soro (Sicile), du flysch galestrino (Lucanie), les bassins à sédiments pélagiques de la dorsale calcaire (Maroc), des zones centrales de Sicile (Vicari, Campofiorito), de l'Ombrie et des Alpes Méridionales, des Dinarides-Hellenides (zones ionienne, pindique, du flysch bosniaque ou béotien, zone serbe).

Le seul territoire qui offre quelque perspective en vue d'une solution est situé à l'est, ou une voie de migration à envisager, c'est par les pontides, l'ensemble Rhodopes-massif serbomacédonien-nappes gétique et supragétique, la marge orientale et l'extrémité nord, de la zone ophiolitique des Metalliferi, enfin le massif de Gilău.

BIBLIOGRAPHIE

116

🖵 Institutul Geologic al României

³ Les analyses minéralogiques et chimiques ont été effectuées par Florica Popescu et respectivement Alexandra Medeşan.

Ianovici V., Borcoș M., Bleahu M., Patrulius D., Lupu M., Dimitrescu R., Savu M. (1976) Geologia Munților Apuseni. Ed. Acad. R.S. România. București.

Jurcsàk T., Popa E. (1978) Resturi de dinozaurieni în bauxitele de la Cornet (Bihor) – – Dinosauriens Eocrétacés dans les bauxites de Cornet (Bihor, Roumanie) –, Nymphaea VI, p. 61 – 64, Oradea.

9 DINOSAURIENS ORNITHOPODES NÉOCOMIENNES - MONTS APUSENI

Papiu C. V., Minzatu S., Iosof V., Udrescu C. (1970) Alcătuirea chimicomineralogică a bauxitelor din Masivul Pădurea Craiului. An. Inst. geol., XXXVIII, pp. 111 - 181. București.

- Patrulius D. (1971) Unitatea de Vălani: un nou element structural al sistemului pinzelor de Codru (Munții Apuseni). D. S. Inst. geol., LVII/5 (1969-1970), pp. 155 - 171. București.
 - Io s o f V. (1975) Notă asupra două tipuri noi de bauxite din Munții Apuseni. D.S. Inst. geol. geofiz. LX (1972-1973), pp. 61 - 64. București.
- Pop G., Mârza I. (1977) Le paléokarst éocrétacé des Monts Pădurea Craiului (R. S. de Roumanie) et sa signification dans le mécanisme de genèse des bauxites, Bull. Sci. Géol., 30, 1 pp. 51 - 58. Strasbourg.

Institutul Geologic al României

THE PRE-ALBIAN CRETACEOUS SEDIMENTARY IN THE FORELAND OF THE ROMANIAN CARPATHIAN MOUNTAINS¹

BY

IOAN PĂTRUȚ², IOAN COSTEA², CONSTANTIN VINOGRADOV², DOINA COMȘA², LAURENȚIU OSMAN², ANASTASIA HERESCU², OLGA OPREA², HORTENSIA BÖNIG²

Introduction

During the last decades, the geological units situated outside the Romanian Carpathian massifs have been intensely investigated by drillings, in order to define their oil and gas potential. In the sedimentary cover, the pre-Albian Cretaceous deposits constitute a sequence with remarkable facies variations. They are developed in the Moesian Platform (Fig. 1) and the Pre-Dobrogean Depression with continuity along the western margin of the Moldavian Platform (Fig. 2).

1. The Moesian Platform

In this unit, the Lower Cretaceous is predominantly carbonate, of basinal (pelagic) type in its central-western part and of submerged platformic type at its extremities (Fig. 1).

1.1. The platform basinal domain comprises pelagic deposits up to about 250 m in thickness, made up of micritic limestones, marls and marly limestones, bearing ammonites, tintinnidae, hedbergellae, radiolaria, sponges, benthic foraminifera, etc. By the study of the ammonitic fauna (M u \ddagger i u, 1963), all the Lower Cretaceous subdivisions have been identified, from the Berriasian to the Lower Barremian, and they were equally attested by the microfaunal studies (C o s t e a et al., 1978).

Supplimentary data regarding the succession, the fauna as well as the sedimentary conditions of the pre-Albian deposits can be found in the previous papers ($Mu \ddagger iu$, 1963; Dragastan et al., 1973; Costea et al., 1978).

Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association,
1981 September 8 - 13, Bucharest, Romania.

² Ministry of Petroleum, Bucharest, Romania.

I. PATRUT et al.

2

1.2. The submerged platform domains cover the western and the central-eastern parts of the Moesian Platform and comprise a wide range of carbonate Lower Cretaceous deposits, locally associated with lagunary and continental deposits. Macrofossil remains certainly proved only the Barremian-Aptian age of the uppermost part of the sequence (M u t i u,

Fig. 1. - Moesian Platform. Spreading of the pre-Albian-Cretaceous deposits. 1, Pelagic ammonitic facies (Berriasian-Lower Barremian). Platformic facies : 2, Middle Berriasian (gypsiferous complex) developed only at the castern end of the platform (rests on various Kimmeridgian-Tithon levels); 3. Upper Berriasian-Hauterivian (rests on Tithon and gypsiferous complex); 4, Barremian-Aptian (rests on Hauterivian and different levels of the Valanginian); 5, border

of the sedimentary area ; 6, line of correlation in Plate - A.

aboratory diagnosis), but in the micropaleontological content several characteristic assemblages were separated, considered as defining al the Lower Cretaceous subdivisions (Vinogradov, Dragastan, 1975; Costea et al., 1978). With some minor modifications, these assemblages are the following:

- the Favreina salevensis assemblage: Berriasian-Lower Valanginian;

- the Trocholina assemblage: Upper Valanginian;

- the Spirillina assemblage: Hauterivian;

- the Palorbitolina and Choffatella assemblage : Barremian-Aptian.

The pile of Lower Cretaceous deposits crossed by deep drillings. roughly corresponds to the schemes drawn out for the synchronous deposits, either outcropping or crossed by shallow drillings in South Dobrogea (Băncilă, 1973; Chiriac et al., 1977; Neagu et al., 1977; Dragastan, 1978), some difference being related only in the manner of considering certain boundaries between the Lower Cretaceous subdivisions and between Jurassic and Cretaceous.

- The Favreina salevensis assemblage is included in a sequence of deposits from the central-eastern part of the Moesian Platform, which can be separated, lithologically and paleontologically, into three complexes:

- The lower complex (or the gypsiferous complex) is only developed in the eastern extremity of the Moesian Platform, north and south

120

Institutul Geologic al României

of the Ialomita River mouth, from where it extends beyond the Danube in the Cernavodă-Constanța area, south of the Capidava-Ovidiu Fault (Fig. 1, Pl.—A). It may locally reach about 300 m in thickness (Amara) and consists of anhydrites and gypsum, with more or less thick interbeddings of limestones and marly limestones. North of the Ialomita River, *Favreina salevensis* (P a r é j a s) associated with Ostracodae was identified in some of these limestones (P a t r u l i u s 1964, C o s t e a et al., 1978) and in the Amara area, a micritic limestone (about 35 m thick) with ostracodae has been noted at the base of the complex.

In South Dobrogea, the gypsiferous complex rests upon the Kimmeridgian and, for this reason, it has been regarded as Purbeckian (B ǎ nc i l ǎ, 1973, C h i r i a c et al., 1977, N e a g u et al., 1977). In the Ialomita Valley area, it overlies, however, various Malm levels, from Lower Kimmeridgian to Upper Tithonian inclusively (Pl.-A) and contains, as already mentioned, *Favreina salevensis*; it is estimated that it should rather be regarded as a Lower Cretaceous term.

- The median complex (the limestones with Anchispirocyclina lusitanica) overlies the gypsiferous complex in the Ialomita Valley-Cernavodă area and the Upper Tithonian (with Clypeina jurassica and/or Macroporella praturloni) in the rest of the central-eastern platform. The complex, 70 - 200 m thick (increasing from north to south), consists of micritic limestones interbedded with pelletal, oosparitic and intraclastic limestones. The microfauna comprises numberless forams, associated with ostracods, decapods, anomurs and algas (C o s t e a et al., 1978). Favreina salevensis (P a r é j a s) is quite widespread and explosively developed on the northern platform margin, where it makes up coprolitic limestones. In the micritic and pelletal limestones, next to Favreina, Macroporella embergeri (B o u r o u l l e c & D e l o f f r e) is rather frequent and specific.

Out of foraminifera, peculiar mention should be made of Anchispirocyclina lusitanica (Egger), Feurtillia frequens Maync, Everticyclammina virguliana (Koechlin), Rectocyclammina chouberty (Hottinger), Pseudocyclammina lituus (Yokohama), Torinosuella peneropliformis (Yabe & Hanzawa), etc. In the Moesian Platform, these forms have never been encountered in the Jurassic; the deposits including them are considered to mark a post-Jurassic marine sedimentary cycle.

— The upper complex (the multicoloured or the variegated complex) overlies the median complex; it is 50 - 70 m thick and consists of micritic limestones interbedded with intrasparitic limestones, marly limestones and grey, greenish, chocolate-brown or red marls. Limestones are more frequent on the northern margin of the Platform, where they are usually ferruginous and from west to east they are progressively substituted by mottled clays.

Lituolidae and miliolidae, associated with ostracodae, favreinae and algae (Macroporella embergeri) have been commonly identified in limestones, while Ostracods and Characeans have been prevailingly encountered in clays.

The regressive tendencies are evident and it is appreciated that the complex closes the sedimentary cycle which starts with the Anchispirocyclina lusitanica limestones.

The multicoloured complex is covered by marine deposits containing a very rich microfauna, with an explosive development of Trocholinids: Trocholina elongata (Leupold), T. alpina (Leupold), T. valdensis (Reichel). This sequence marks a new sedimentary cycle and was differently dated — Upper Valanginian in the boreholes (Costea et al., 1978) and Upper Berriasian-Valanginian or Middle-Upper Valanginian in the outcrops (Chiriacet al., 1977; Neaguet al., 1977, respectively Dragastan, 1978) — but most of the data suggest an Upper Valanginian age and in this context, the underlying deposits have been considered as Berriasian-Lower Valanginian.

The chronostratigraphic value of the microfossils in these deposits is still questionable (it is still debated within the entire Mediterranean Basin — the papers of the Colloque of Lyon, 1973, on the Jurassic-Cretaceous boundary) and a precise boundary between the Valanginian and the Berriasian cannot be established yet. Until further knowledge, it has been provisorily situated between the Anchispirocyclina lusitanica limestones and the multicoloured complex.

As for the Jurassic-Lower Cretaceous boundary, it is obviously marked by the extinction of Macroporella praturloni and/or Clypeina jurassica and by the occurrence of Farreina salevensis (at the gypsiferous complex level) or of the Anchispirocyclina lusitanica and/or Macroporella embergeri (at the limestone level). On the other hand, between the Tithonian and the Lower Cretaceous, a sedimentary gap is obvious, defined by the gypsiferous complex deposition overlying various Kimmeridgian-Tithonian levels in the easternmost part of the platform (Pl. -A) and by the deposition of the Anchispirocyclina lusitanica limestones over the Upper Tithonian (without any gypsiferous complex in-between) in the rest of the eastern platform. Most likely, this gap includes, at least, a part of the Lower Berriasian and, in this frame, the Anchispirocyclina lusitanica complex could be tentatively regarded as Upper Berriasian and the gypsiferous complex as Middle-uppermost Lower Berriasian.

The limestones with trocholinae of Upper Valanginian age are overlain by a carbonate sequence comprising the Hauterivian (the Spirillina assemblage) and the Barremian-Aptian (the Palorbitolina and Choffatella assemblage). A detailed account on all these deposits has been given in some previous works (Chiriac et al., 1977; Neagu et al., 1977; Costea et al., 1978: Dragastan, 1978) and is not necessary to insist upon them.

2. The Pre-Dobrogean Depression and the Moldavian Platform

In these two units (Fig. 2, Pl. I - B), the pre-Albian Cretaceous transgressively overlies the Tithonian (the Pre-Dobrogean Depression) and the Paleozoic or the Riphean (the western margin of the Moldavian Platform), being comparable to that in the Moesian Platform.

The most complete succession has been identified in the Birlad Depression (the north-western end of the Pre-Dobrogean Depression); it is 400-700 m thick and comprises several complexes, clearly distinct lithologically and paleontologically.

122

4:

- The limestones complex with Anchispirocyclina lusitanica (200 - 400 m thick) overlies the Upper Tithonian (with Macroporella praturloni) and according to the microfauna (foraminifera, corals and dasycladaceae or codiaceae algae) it is obviously the equivalent of the Anchispiro-

Fig. 2. - Birlad Depression and Moldavian Platform. The spreading of Lower Cretaceous deposits (according to the drilling data).

1, Palorbitolina and Choffatella complex (Barremian-Aptian);

2, Trocholina complex (Upper Valanginian): 3, oolitic sandstones complex (late Lower Valanginian); 4, red continental complex (late Lower Valanginian); 5, ostracods and chara complex (early Lower Valanginian); 6, Anchispirocyclina lusitanica and ostracods chara complexes (Upper Berriasian-early Lower Valanginian) in the Birlad Depres sion; 7, their northern border below the late Lower Valanginian; 8, front of the pre-Carpathian overthrust (at the surface); 9, line of the correlation

presented in Plate - B.

cyclina lusitanica complex in the Moesian Platform. The gypsiferous complex is lacking in the Bîrlad Depression.

The limestones have been encountered only between the Prut and the Siret valleys but one may suppose that they are also present on the deep western margin of the Moldavian Platform, still uninvestigated by drillings.

- The complex with ostracodae and characeae, which overlies the Anchispirocyclina limestones, consists of red-brown or grey-greenish clays at the base (about 50 m thick), followed by anhydrites (the Glăvănești Anhydrite — about 50-70 m thick) with thin intercalations of grey clays and dolomites. The ostracods and the characeans (to which favreinids are added at certain levels) are similar to those in the variegated complex in the Moesian Platform. Regression was stronger here, even favouring anhydrite formation.

In a partly different facies, the complex was also encounterred on the north-western end of the Moldavian Platform (Suceava area – Fig. 2, Pl. I-B), in the direct southern prolongation of the Lwow Depression from the USSR. It reaches here 350 m in thickness and rests upon the Paleozoic. It consists of brick-red sandstones, brown clays and ferruginous

L PATRUT et al.

6

marls with more or less thick intercalations of dolomicrites, dolomicrosparites, micritic limestones and anhydrites. There were identified the same ostracods and characeans as in the Bîrlad Depression and a connection could be presumed through the western, sunken extremity of the Moldavian Platform, still uninvestigated by drillings.

Between the Prut and the Birlad valleys, the ostracods and characean complex is overlain by red continental deposits (up to 300 m thick), consisting of clays and gritty sands, often thinly interbedded with gypsum, anhydrites and dolomites. The sequence is transgressively overlain by the Badenian (Pl. -B).

Similar deposits, exceeding 500 m in thickness, have also been identified in the Danube Delta area (the south-eastern extremity of the Pre-Dobrogean Depression), where they are resting upon the Upper or Middle Jurassic, underlying the Sarmatian.

No fossils have been identified in the Bîrlad Valley, but in the Danube Delta region a palynoflora has been encountered, which points to a Lower Cretaceous age (B a l t e \$ – laboratory diagnoses) and, as a whole, this sequence is estimated to constitute the top of the ostracods and characeans complex.

West of the Bîrlad Valley, the Glăvănești Anhydrite is overlain by grey-violet quartzitic sandstones with thin beds of leptochloritic or calcareous oolites. No fossils have been signalled, but the sandstones are covered by deposits with trocholinids and can be regarded as the top of the ostracods and characeans complex, in a different facies from the red one in the Bîrlad Valley. These two facies could be separated by a threshold (still less known) lying west of the Bîrlad Valley (Pl.-B).

In the Siret Valley, the sandstones exceed 300 m in thickness, overpass the anhydrites, directly overlying the Tithonian, and extend northwards on the Moldavian Platform western border, up to the Tîrgu-Neamț locality. Here they rest upon the Riphean or Paleozoic and display tidal features with subcontinental episodic. The anhydritic cement of some sandstones suggests a sedimentation of the Sabkha type.

- The complex with trocholinids and miliolids is only known in the Bacău town and in the Suceava town areas (Fig. 2), displaying a sandy intraclastic calcareous facies in the first area, and an intrapelsparitic calcareous facies in the second one (sited in the southern prolongation of the Lwow Depression in the USSR). The deposits, over 100 m in thickness, include a rich assemblage of foraminiferal, algal, and equinidal remains, in which the explosion of trocholinids allows a certain correlation with the trocholinids complex in the Moesian Platform.

- The Palorbitolina and Choffatella complex follows after a sedimentary gap corresponding to the Hauterivian and is fairly developed south of the Bacau town. Here it can reach a thickness of about 150 m and consists of quartzitic and lithic sandstones, in places with interbedded conglomerates and oolitic limestones. A rich content of forams, briozoans, corals, ostracods, characeans has been identified, out of which *Palorbitolina* conoidea (Gras), *P. lenticularis* (Blumenbach) and *Choffatella decipiens* (Schlumberger) are very common, as in the Moesian Platform, indicating a Barremian-Aptian age.

In a single well only, a rest of the complex which escaped to erosion was found in the Suceava area. It is about 30 m thick, the fossil content is the same, but the lithofacies is quite different (calcitic sandstones, bioclasts and gritty glauconitic marls) suggesting certain relationships with the Lwow Depression in the USSR.

Inferences

The pre-Albian Cretaceous sedimentary sequence crossed by drillings in the Foreland of the Romanian Carpathians is predominantly developed in a facies of platform type, excepting the central-western part of the Moesian Platform, where it exhibits a pelagic ammonitic facies.

The study of the macro- and especially of the microfauna has allowed the identification of all the Lower Cretaceous subdivisions, from Berriasian to Aptian, but in detail, the boundaries between these subdivisions can be still questionable.

In the platform facies, the presence of some lagunary and/or continental deposits has allowed to separate sedimentary cycles, whose depositional manner shows that the sedimentation has not begun always with the same deposits and that it was not throughout continuous.

The oldest Cretaceous deposits (probably late Lower Berriasian) are lagunary and marine, rest upon different terms of the Kimmeridgian and Tithonian and are only developed north and south of the Ialomița River mouth with extension into South Dobrogea.

Furthermore, the sedimentation area extended over the entire Moesian Platform and into the Bîrlad Depression, with carbonate marine deposits at the beginning (Upper Berriasian) and then continental and/or lagunary ones (Lower Valanginian). At this last level, the sedimentation area also comprised the north-western margin of the Moldavian Platform.

From the Upper Valanginian, the sedimentation has continued up to the Aptian with some stratigraphical gaps, regional (Hauterivian in the Bîrlad Depression and the Moldavian Platform) or local (Moesian Platform).

REFERENCES

- Băncilă I. (1973) Asupra prezenței unei formațiuni gipsifere purbekian-wealdiene in regiunea Fetești-Constanța. Slud. cerc. geol. geofiz., ser. geol., 18(1); p. 115 - 125, București.
- Chiriac M., Bărbulescu A., Neagu T., Dragastan O. (1977) La Dobrogea Centrale et du sud pendant le Jurassique et le Crétacé. Rev. Roum. Géol., Géogr. tome 21, p. 145 - 153, București.
- Costea I., Comșa D., Vinogradov C. (1978) Microfaciesurile Cretacicului inferior din Platforma Moesică. Slud. cerc. geol., geofiz., geogr., ser. geol., 23(2) p. 299 - 311, București.
- Dragastan O. (1978) Microfacies de la série calcaire crétacée inférieure d'Aliman (Dobrogea de sud). D. S. Inst. geol. geofiz. LXIV/ 5, p. 107 136, București.

7

	L.	PATRUT	eit	al.
--	----	--------	-----	-----

- Muțiu R., Vinogradov C. (1973) Zonele microfaciale și limita Jurasic-Cretacic în Carpații Orientali (Munții Hăghimaș) și în Platforma Moesică. Stud. cerc. geol., 18 (2), p. 509 - 533, București.
- Muțiu R. (1963) Contribuții la studiul Neocomianului amonitic din Platforma Moesică (partea centrală). Rev. Pelrol, Gaze XIV (11), p. 525 531, București.
- Neagu T., Pană I., Dragastan O. (1977) Biostratigraphie de la série des calcaires Eocrétacés de l'aire Cernavodă-Alimanu-Ostrov. Rev. Roum. Géol., Géophys. et Géogr. tome 21 p. 137 - 144, București.
- Patrulius D. (1964) Asupra prezenței unor calcare cu coprolite de Crustacei decapozi (Favreina salevensis Parêjas) în Neocomianul inferior din Platforma Moesică (Cîmpia Română). D. S. Insl. geol. geofiz., L/2, p. 325 - 330, București.
- Vinogradov C., Dragastan O. (1975) Microfacial study of the Upper Jurassic and Lower Cretaceous deposits from the central part of the Moesian Platform (Romania). *Rev. Roum. Geol., Geophys., Geogr.*, 19, p. 105 - 118, București.

Institutul Geologic al României

CORRELATION OF THE LOWER CRETACEOUS DEPOSITS

ANUARUL INSTITUTULUI DE GEOLOGIE ȘI GEOFIZICĂ, VOL LIX.

Imprim Atel Inst. Geol. Geof.

LES FORMATIONS ROUGES SITUÉES À LA LIMITE JURASSIQUE-CRÉTACÉ ET DE L'APTIEN DES UNITÉS D'AVANT-PAYS DES CARPATHES ROUMAINES ¹

PAR

CONSTANTIN VINOGRADOV²

Les formations rouges de la limite Jurassique-Crétacé et de l'Aptien ont été détectées en majorité grâce aux forages, à savoir dans le nord-ouest de la Plate-forme moldave, dans les Dépressions de Bîrlad et pré-dobrogéenne, dans le nord-est de la Plate-forme moesienne et dans la Dobrogea méridionale (fig. 1, 2).

La genèse continentale-lacustre ou continentale-lagunaire des formations rouges pose des problèmes en ce qui concerne la datation chronostratigraphique exacte. Afin de les résoudre convenablement, les séquences marines fossilifères qui entourent ou qui s'intercalent dans les formations rouges y ont une contribution essentielle.

Les formations rouges situées à la limite Jurassique-Crétace

Dans les forages peu profonds (150 - 200 m) effectués dans la Dobrogea méridionale (Cernavodă, Saligny, Nazarcea) on a rencontre, au-dessous des calcaires d'âge berriasien supérieur, la succession suivante : marnes et argiles polycolores, calcaires micritiques, gypses, anhydrites et dolomicrites lagunaires. Seules les marnes et les argiles polycolores contiennent une association de Charophytes et d'Ostracodes : *Clavator pecki* M ä d l e r, *Nodosoclavator nodulosus* (P e c k.), *Cypridea dololabrata* M a r t i n, *Cypridea alata* W a l l, *Iliocypris* cf. *jurassica* M a r t i n (N e a g u et al., 1977). Dans les calcaires d'âge berriasien supérieur qui recouvrent les marnes et les argiles polycolores, les mêmes auteurs ont déterminé : Anchispirocyclina maynci (H o t t.), Trocholina valdensis (R e i c h e l), Salpingoporella annulata C a r o z z i , S. steinhauseri C o n r a d , P r a t . & R a d o i č ., Likanella bartheli B e r n i e r, Pachiodontes, Éponges, Gastropodes. Tenant compte du contexte régional, au-dessous du complexe laguno-continental il y a des calcaires cor-algals

¹ Note présentée au 12 ème Congrès de l'Association Géologique Carpatho-Balkanique, 8 - 13 septembre 1981, Bucarest, Roumanie.

² Institute de recherches et prospections pour hydrocarbures, rue Toamnei 103, Bucarest.

et des dolomies kimméridgiennes (Chiriac et al., 1977). Băncilă (1973) a attribue à la formation rouge terrigène-évaporitique l'âge purbecko-wealdien; ultérieurement, Neagu et al. (1977), la considèrent exclusivement purbeckienne, correspondant à l'intervalle Tithonique-Berriasien moyen.

Poursuivie vers l'ouest (par les forages du nord-est de la Plateforme moesienne, le secteur Slobozia, Amara, Padina, Jugureanu), la formation rouge s'effiloche progressivement; des marnes, marnocalcaires, argiles polycolores et évaporites alternant avec des calcaires (pélétaux, micritiques, oolithiques, microoncolithiques) à microfaune et microflore caractéristiques pour un milieu marin cotier (le domaine inter- et supratidal). Costea et al. (1978) ont determine dans ces calcaires des coprolithes : Favreina salevensis (Paréjas), des foraminifères : Anchis-pirocyclina lusitanica (Egger), Trocholina elongata (Leupold), Feurtillia frequens Maync, Pfenderina neocomiensis (Pfender), des algues : Macroporella embergeri (Bouroullec & Deloffre), Actinoporella podolica (Alth.), Radoiciciella subtilis Dragastan. Les marnes et les argiles polycolores contiennent, tout comme dans le forage de Cernavodă, d'Ostracodes et de Charophytes. A partir du contenu fossile ci-dessus, on a attribue à ces depôts l'âge berriasien-valanginien inferieur. Au-dessous de ceux-ci il y a des dolomies, des calcaires à Clypeina jurassica Favre aux intercalations gypsiferes et anhydritiques, donc un facies marin-lagunaire d'âge tithonique superieur (V i n o g r a d o v et al., 1978).

Plus loin vers l'ouest (le secteur Urziceni, Snagov, Potigrafu) les dépôts berriasiens-valanginiens inférieurs se developpent en exclusivité dans le facies marin littoral abondant en calcaires pélétaux et coprolithiques à Favreina salevensis (P a r é j a s). Sous ces dépôts il y a des calcaires intrasparitiques et des biolithites algales à Clypeina jurassica F a v r e, Cayeuxia moldavica F r o l l o, des Coraux et des Bryozoaires d'âge tithonique supérieur. Surmontant les dépôts berriasiens-valanginiens inférieurs, il y a des calcaires intrasparitiques et micritiques à Pfenderina neocomiensis (P f e n d e r), Trocholina elongata L e u p o l d et Pseudotextulariella salevensis C h a r o l l., B r ö n n., Z a n i n d'âge valanginien supérieur.

Dans la Depression de Bîrlad, la formation rouge ayant une épaisseur stratigraphique de 200 — 300 m, est constituée de dépôts terrigènes bariolés fins (marnes et argiles ferrugineuses à Ostracodes et Charophytes, grès fins ferrugineux), de roches carbonatées (micrites, pelsparites, oosparites, dolomicrites aux variétés argileuses et ferrugineuses) et évaporites (anhydrites).

Au-dessous de la formation rouge terrigène-lagunaire reposent des calcaires récifaux cor-algals (par endroits dolomitisés et aux nids d'anhydrite) d'âge tithonique supérieur, à *Conicospirillina basiliensis* Mohler, *Clypeina jurassica* Favre, *Macroporella praturloni* Dragastan et des microoncolithes. La partie sommitale de la formation récifale cor-algale contient des foraminifères : Anchispirocyclina lusitanica (Egger), Pseudocyclammina lituus (Yoko), Everticyclammina virguliana (Koechlin) et des algues : Thaumathophorella parvovesiculifera

9 - c. 50

3

(Raineri), Actinoporella podolica (Alth.) qui indiquent l'âge berriasien pour ce segment stratigraphique.

Dans le sud de la Dépression de Bîrlad (Polocin et Aldești) les forages ont traversé des dépots hauteriviens, localement développés en faciès pélagique (calcaires micritiques siltiques, marnes à Spirillinidae et Hedbergellinae).

On pourrait donc conclure sur l'âge valanginien, peut-être berriasien supérieur, de la formation rouge dans la Dépression de Bîrlad.Le caractère de la sédimentation est mixte, des séquences marines épicontinentales (calcaires⁻ pélétaux, oolithiques et récifaux) se développant également sur le fond continental-évaporitique.

Dans la Dépression pré-dobrogéenne (les forages de Stipoc, Letea, C. A. Rosetti, L. Roşu dans le Delta du Danube) on a rencontré des argiles ferrugineuses dolomitiques, de grès fins et de siltites au cément calcitiqueferrugineux, dolomitique-gypsifère ou à matrice argileuse-séricitique, qui s'étendent sur une épaisseur stratigraphique de 300 - 500 m. La datation stratigraphique de ces dépôts est incertaine, car on n'y a pu déterminer que quelques espèces palynologiques ³: Trilobosporites apiverucatus C o up e r, Clarifera triplex, Bolchovitina, Pilosisporites trichopapillosus (T h ie r g a r t) D e l c o u r t & S p r u m o n t qui indiqueraient le Crétacé inférieur. L'épaisseur considérable de cette formation, aussi bien que la présence sous-jacente d'une formation récifogène d'âge tithonique inférieur ⁴ (à microoncolithes, très rarement Saccocoma, fragments d'échinides, brachiopodes, gastéropodes, bryozoaires) permettent de supposer un âge compréhensif purbecko-wealdien, même aptien pour la formation rouge de la Dépression pré-dobrogéenne.

Dans le nord-ouest de la Plate-forme moldave, la formation rouge épaisse d'environ 200 m se compose de dépots terrigènes barriolés (marnes et argiles ferrugineuses, grès fins à cement dolomitique-ferrugineux, conglomérats polymictiques), roches carbonatees (micrites et microsparites brunes, dolomicrites ferrugineuses, calcarénites) et évaporites (anhydrites). On y a recolte de diverses espèces d'Ostracodes et de Characeae, Favreina salevensis (Paréjas) et Aeolissacus. Au-dessus de la formation rouge reposent des calcaires biointramicritiques, biopelsparitiques et micritiques à foraminifères : Pfenderina neocomiensis (Pfender), Trocholina alpina (Leupold), Trocholina elongata (Leupold), Neotrocholina valdensis Reichel, Haplophragmoides joukowskyi Charoll., Brönn., Zanin, Quinqueloculina div. sp. et des algues : Salpingoporella annulata Carozzi, ce qui atteste leur âge valanginien moyensupérieur. Les forages effectués jusqu'à présent n'ont pas mis en évidence la présence des dépôts jurassiques supérieurs dans le soubassement de la formation rouge qui, soit manquent dans ce secteur, soit se trouvent un peu vers l'ouest. Admettant donc un âge berriasien-valanginien inférieur pour la formation rouge du nord-ouest de la Plate-forme moldave, on ne pourrait faire abstraction de la présence possible du Purbeckien dans la partie basale d'un secteur plus occidental.

130

Les formations rouges d'âge aptien

Les dépôts aptiens dans la Dobrogea méridionale sont représentés par deux facies distincts : continental-lacustre (la formation rouge) et marin. Chiriac et al., 1977, font preciser l'étendue du facies continental-lacustre : dans le secteur compris entre la vallée de Carasu (la parallele Cernavodă) et la ligne du chevauchement Capidava-Ovidiu, aussi bien que son âge (bédoulien inférieur et gargasien). Il y a donc deux niveaux pour la formation rouge entre lesquels on trouve une intercalation lentilliforme de calcaires micritiques bédouliens supérieurs à Cheloniceras sp., Deshayesites sp., Palorbitolina lenticularis (Blum.). Le Clansavesien (la zone à Nodosocostatum et Bigoureti) constitué de sables et gres glauconieux, graviers ou microconglomerats à phosphates recouvre transgressivement la formation rouge. A la constitution de la formation rouge participent : sables siliceux, graviers, conglomérats, argiles sableuses et kaolineuses multicolores. La nature de ces dépôts est terrigène-détritique, car ils sont le résultat du remaniement d'un matériel résiduel provenu par l'altération de l'éruptif nord-dobrogéen dans un milieu sousaerien (Popes cu et al., 1969). L'épaisseur stratigraphique de ces deux niveaux de formation rouge est de 1 - 20 m (Bédoulien inférieur), respectivement de 2 - 30 m (Gargasien).

On a également rencontré la formation rouge aptienne au moyen des forages dans la partie orientale de la Plate-forme moesienne (le secteur Slobozia-Padina-Jugureanu) où elle recouvre transgressivement la formation rouge du Berriasien-Valanginien inferieur. Les lithotopes terrigenes caractéristiques: argiles, marnes, sables, grès et conglomerats barioles (polycolores) dominent dans l'est et le nord du secteur (Jugureanu, Odăeni, Ștefan Gheorghiu, Roșiori); vers l'ouest (Brăgăreasa-Colelia-Călărași) il y a des calcaires biomicritiques et oolithiques a Palorbitolina lenticularis (Blum.), P. conoidea (Gras.), Choffatella decipiens (Schlum.) qui prédominent.¹ Les pélites polycolores contiennent de diverses espèces d'Ostracodes et de Characees. L'épaisseur stratigraphique de la formation rouge aptienne (les séquences calcaires marines littorales y comprises) est de 10 - 25 m allant jusqu'à quelques dizaines de mètres dans les secteurs depressionaires.

Dans la Depression de Bîrlad, la formation rouge berriasiennevalanginienne est recouverte d'une maniere discordante par un deuxieme niveau de formation rouge terrigène-continentale qu'on a attribué, faute de matériel paléontologique, à partir de la corrélation des diagraphies électriques, à l'Aptien. L'épaisseur des dépôts aptiens rouges décroît de l'ouest (Bîrlad, 250 m) vers l'est (Prut, 110 m); des depots marins badéniens les recouvrent d'une manière discordante. Du point de vue lithologique, elles se caractérisent par des marnes et des argiles ferrugineuses bariolees, argiles dolomitiques, sables, gres, dolomies calcaires greseuses. Elles différent de la formation rouge inférieure (berriasienne-valanginienne) par l'absence des anhydrites et des intercalations calcaires d'origine marine. Dans la partie occidentale de la Depression de Bîrlad (le secteur Găiceana-Huruesti), l'Aptien se developpe en facies marin-littoral à grès siliceux, gres lithiques, sables, graviers et argiles contenant Palorbitolina conoidea (Gras.), P. lenticularis (Blum.), Choffatella decipiens (Sch-

l u m.), *Trocholina aptiensis* I o v c e v a. Plus vers le nord (le secteur Bacău), l'Aptien à un contenu microfaunique similaire, se compose de calcaires oosparitiques, de grès siliceux et d'intercalations conglomé-ratiques.

A l'égard d'une possible existence des dépôts aptiens dans le toit de la formation rouge dans la Dépression pré-dobrogéenne on a fait certaines référances dans le paragraphe ci-dessus.

Conclusions

A la limite Jurassique/Crétace et dans l'Aptien, les secteurs périphériques des unités d'avant-pays des Carpathes roumaines sont colmatés avec des produits résiduels provenus de l'écorce d'altération jurassique et crétacée inférieure formée sur le compte de l'eruptif nord-dobrogéen. C'est le cas de la Dobrogea méridionale, de l'extrêmité nord-est de la Plate-forme moesienne, la Dépression pré-dobrogéenne et la Dépression de Bîrlad. Leur emplacement dans la proximité de la région denudée. aussi bien que la présence des éléments de l'éruptif altéré, des feldspaths potassiques, des inétaquartzites et du zircon dans les grès lithiques et dans les conglomérats indiquent comme source l'éruptif nord-dobrogéen. A partir des considerations ci-dessus, les formations rouges d'âge jurassique supérieur-crétacé inférieur autour de l'éruptif nord-dobrogeen constituent une province pétrologique sédimentaire. La formation rouge du nord-ouest de la Plate-forme moldave (le secteur Rădăuti) appartient à une autre province pétrologique sedimentaire; la source probable du matériel résiduel pourrait être les calcaires paléozoïques de la Plateforme moldave. L'idée est soutenue aussi par de nombreux fragments de biosparites à pigment ferrugineux qui entrent dans la composition des calcirudites et des calcarenites intercalées dans la formation rouge.

Le caractère continental-lacustre ou continental-lagunaire diminue avec la croissance de la distance de la zone dénudée; ainsi se produit une transition graduelle vers les facies mixtes (continentaux et marins-littoraux) et finalement vers les facies marins épicontinentaux typiques.

Les formations rouges sont précédées temporellement par des formations récifales cor-algales (Kimméridgian-Tithonique inférieur qui par endroits persistent également au Tithonique supérieur et même au Berriasien), ayant une vaste étendue régionale, accompagnées par de processus très actifs de dolomitisation syngénétique et du développement des faciés évaporitiques.

- ³ N. Baltes communication verbale.
- ⁴ O. Dragastan communication verbale.

BIBLIOGRAPHIE

Băncilă I. (1973) Asupra prezenței unci formațiuni gipsifere Purbeckian-Wealdiene în regiunea Fetești – Constanța. Slud. cerc. geol., geofiz., geogr., geologie, 18, 1, București.

Institutul Geologic al României

- Chiriac M., Bărbulescu A., Neagu T., Dragastan O. (1977) La Dobrogea centrale et du sud pendant le Jurassique et le Crétacé. *Rev. Roum. Géol., Géophys., Géogr. Géologie,* 21, București.
- Costea I., Comșa D., Vinogradov C. (1978) Microfaciesurile cretacicului inferior din Platforma Moesică. Stud. cere. geol., geofiz., geogr., geologie, 23, 2, București.
- Dragastan O. (1978) Microfaciès de la série calcaire, crétacée inférieure d'Aliman (Dobrogea de Sud). D. S. Inst. geol., geofiz., LXIV, București.
- Neagu T., Pană I., Dragastan O. (1977) Biostratigraphie de la série des calcaires éocrétacés de l'aire Cernavodă-Alimanu-Ostrov. Rev. Roum. Géol., Géophys. et Géogr. Géologie, 21, București.
- Patrulius D., Neagu T., Avram E., Pop G. (1976) The Jurassic-Cretaceous Boundary beds in Romania. An. Insl. geol. geofiz., L, 71 - 127, Bucuresti.
- Popescu I. C., Mares I., Gheorghiu C. (1969) Studiul fizico-chimic și mineralogic al unor argile din formațiunile geologice cretacice din Dobrogea de sud. Anal. Univ. Buc. (Geologie), XVIII, București.
- Vinogradov C., Costea I., Comșa Doina (1978) Microfaciesuri jurasice superioare din Platforma moesică corelate cu depozite sincrone din zone invecinate. Stud. cerc. geol., geofiz., geogr., geologie, 23, 1, București.

QUESTIONS

E. Du dich. Vinogradov a évoqué la destruction d'une ancienne croûte d'altération comme source principale du matériel des couches rouges étudiées. Est-ce qu'il y a des données chimiques et/ou minéralogiques sur leur composition? Cela présente un intérêt particulier par rapport à la présence éventuelle des minéraux d'alumine libre, donc bauxitique, d'origine latéritique.

Réponse: L'existence des anciennes croûtes latéritiques aux alentours des formations rouges constitue une hypolhèse plausible qui n'a pas été confirmée dans les forages jusqu'à présent. Par conséquent nous n'avons pas disposé du matériel pour les analyses requises.

Institutul Geologic al României

NANNOPLANCTON CALCAIRE À LA LIMITE CRETACÉ-TERTIAIRE DANS LE FLYSCH DES CARPATHES ORIENTALES ROUMAINES ¹

PAR

IOAN COSTEA PETRE IONESCU²

Le problème de la limite Crétacé-Paléogène dans les Carpathes orientales roumaines a intéressé depuis longtemps de nombreux chercheurs. Faute de macrofossiles, leurs conclusions ont été exclusivement fondées sur des arguments d'ordre micropaléontologique (microfaune, palynologie). Parmi les chercheurs qui ont étudié, au cours des dernières 15 — 20 années, la séquence stratigraphique mentionnée, on pourrait rappeler: V i n ogradov, 1960; Tocorjescu, 1960, 1963; Săndulescu, Săndulescu, Kusko, 1962; Grigoraș, Pauliuc, Costea, 1962, 1964, 1966, 1970; Dumitrescu, 1963; Joja, Cosma, Dumitrescu, 1963; Costea, Dima, 1965; Agheorghiesei, Băncilă, Costea, Roza, 1967; Băncilă, Marinescu, Costea, 1968; Costea, Saraiman, Comșa, 1969; Bratu, Alexandrescu, 1970; Dimian, 1970; Bratu, Gheța, 1972, 1974; Tocorjescu, Ionesi, 1974; Bratu, 1975; Balteş, Cosma, Lebenzon, Munteanu, 1975; Ionesi, 1975; Micu, 1977 etc.

Que les travaux accomplis jusqu'à présent aient réalisé des biozonations plus larges ou plus détaillées, tous montrent que dans les Carpathe^s orientales, les dépôts crétacés se trouvent en continuité avec les dépôt^s paléogènes et que le segment de la limite indique l'existence du Paléocène inférieur et supérieur. La continuité de la sédimentation est évidente, se dessinant dans toutes les unités majeures du flysch carpathique où il y a des dépôts crétacés aussi bien que paléogènes.

On n'a pas encore essayé, en Roumanie, d'élucider le problème de la limite Crétacé-Paléogène dans les Carpathes orientales à partir de l'étude du nannoplancton calcaire. Par conséquent, l'ouvrage ci-présent vient de s'assumer cette responsabilité pour la première fois.

¹ Note présentée au 12 ème Congrès de l'Association Géologique Carpatho-Balkanique, 8 – 13 septembre 1981, Bucarest, Roumanie.

² Ministère du Petrole, Bucarest, Roumanie.

Source du matériel d'étude. Pour le travail ci-présent on a prélevé 352 échantillions géologiques dans les affleurements les plus représentatifs du flysch crétacé-paléogène et on a choisi 396 échantillons de puits des forages qui ont traverse la succession comprise entre le Campanien supérieur et l'Eocène inférieur. Selon leur distribution sur les unités structurales (d'après l'opinion de Băncilă, 1958), ces dernières sont:

— l'unité ouest-interne; Cetățeni-Lăicăi (le bassin de la Dîmbovița) et les forages de Fieni;

- l'unité est-interne : Neagra et Ticos (le bassin du Bicaz);

-l'unité médio-interne (Audia); les forages de Siriu et de Vulpea-Bertea;

- l'unité médio-marginale.

A) La sous-unité médiane : vallée de Sadău (le bassin de la Suceava), Tașca (le bassin du Bicaz) et les forages Vatra Moldovița, Ața Brateș, Asău, vallée d'Uzului, Apa Neagră, Hilib, Ojdula, Ghelința et Bisca Cernat;

B) La sous-unité intermédiaire : vallée de Voroneț (le bassin de la Moldova), vallée de Pluton (le bassin du Neamț), vallée de Pîngărați (le bassin de la Bistrița) et les forages de Gura Humorului, Frasin, Suha, Pluton, Pipirig et Pîngărați;

C) La sous-unité marginale: vallée de Sucevița (le bassin de la Suceava), vallee de Secuța (le bassin du Neamț) et les forages de Putna Dumesnic, Geamăna, Chilii, Zemeș, Tașbuga, Moinești, Supan, Lapoș, Dărmănești, Păcurița, Cerdac, Brețcu, Oituz, Lepșa, Zăbala et vallee de Gardului.

D) L'unité externe: vallée de Runcu (le bassin de la Bistrița), vallée de Putna-Lepșa (le bassin de la Putna) et les forages Straja, Geamăna,Zemeș, Tazlău, Tașbuga, Moinești, Dărmănești, Oituz et Ojdula.

Biozones de nannoplancton dans le segment stratigraphique étudié. Suivant la distribution des espèces de nannoplancton dans l'intervalle compris entre le Vraconien et l'Eocene inférieur, on a pu separer 7 zones de nannoplancton calcaire.

Les biozones établies ont été correlées avec les zones proposées par: Cepek-Hay, 1969; Manivit, 1971; Roth-Thierstein, 1972; Roth, 1973; Perch-Nielsen, 1977; Verbeek, 1977 et Costea, Comșa, 1979, pour les dépôts crétacés et Martini, 1970 et Hay, 1970, pour les dépôts paléocènes. Pour permettre la réalisation des corrélations détaillées, régionales et extrarégionales, on a fait des références aux schémas stratigraphiques basées sur des foraminifères et surtout sur les foraminifères planctoniques.

Les zones individualisées sont:

1. La zone Ceratolithoides aculeus. Définition : l'intervalle stratigraphique compris entre la première apparition de l'espèce Ceratolithoides aculeus (Stradner, 1961) Prins, Sissingh, 1977 et celle de l'espèce Tetralithus trifidus (Stradner, 1961) Bukry, 1973.

La zone individualisée dans le Campanien inférieur dans le facies des couches de Hangu de l'unité moyenne-marginale est corrélable avec la zone microfaunique Globotruncana elevata et G. stuartiformis.

NANNOPLANCTON À LA LIMITE CRETACE-TERTIAIRE DES CARPATHES

137

3

En même temps que l'apparition de l'espèce Ceratolithoides aculeus (Stradner, 1961) Prins et Sissingh, 1977, sur le fond fossile de l'association santonienne, les espèces nouvelles suivantes viennent de s'ajouter, tout en caractérisant des différents niveaux stratigraphiques: Arkangelskiella cumbiformis Vekshina, 1959; A. specillata Vekshina, 1959; Broinsonia parca (Stradner, 1963) Bukry, 1969; Kamptnerius magnificus Deflandre, 1959; K. tabulatus Perch-Nielsen, 1968; Biscutum constants (Gorka, 1957) Black, 1967; Cribrosphaerella ehrenbergi (Arkhangelsky, 1912) Deflandre, 1952; Reinhardites mirabilis Perch-Nielsen, 1968; Cylindralithus serratus Bramlette, Martini, 1964; Chiastozygus anceps (Gorka, 1957) Shumenko, 1976; C. cuneatus (Liulieva, 1967) Cepek, Hay, 1969; Tranolithus manifestus Stover. 1966: T. orionatus (Reinhardt, 1966) Reinhardt, 1966; Vagalapilla compacta Bukry, 1969; Vekshinella stradneri Rood, Hay § Barnard, 1971; Zygodiscus deflandrei Bukry, 1969; Z. theta (Black. 1959) Bukry, 1969; Ahmuellerella octoradiata (Gorka, 1957) Reinhardt, 1966; Micula concava (Stradner, 1960) Bukry, 1969: Rucinolithus havi Stover, 1966; Tetralithus gothicus Deflandre, 1959; T. obscurus Deflandre, 1959; T. pyramidus Gardet, 1955 et Marthasterites furcatus (Deflandre, 1954) Deflandre, 1959.

La partie supérieure de la sequence caractérisée par l'association à Ceratolithoides aculeus est marquée par la disparition de deux de ses espèces, précisément Zygodiscus theta (Black, 1959) Bukry, 1969 et Rucinolithus hayi Stover, 1966.

2. La zone Tetralithus trifidus. Definition: l'intervalle stratigraphique compris entre la première apparition de l'espèce Tetralithus trifidus (Stradner, 1961) Bukry, 1973 et l'apparition de l'espèce Lithraphidites quadratus Bramlette, Martini, 1964.

La zone a été mise en évidence par les unités ouest-interne, moyennemarginale et externe du flysch des Carpathes orientales de la Roumanie et correspond à la séquence du Campanien supérieur et du Maestrichtien inférieur développée dans les marnes rouges de Gura Beliei, les couches de Hangu et les couches de Cașin, corrélable à la zone de foraminifères Globotruncanella stuarti et Globotruncana contusa.

Association riche qualitativement et quantitativement, elle se fait distinguer par 20 espèces supplémentaires au niveau inférieur du segment stratigraphique, également caractérisé par la disparition de 29 espèces du niveau supérieur. Le tableau de distribution annexé présente les espèces supplémentaires, tout comme celles qui disparaissent.

Au niveau inférieur du segment, caractérise par ces espèces, s'ajoutent: Biscutum melaniae (Gorka, 1957) Reinhardt, 1969; Markalius reinhardtii Perch-Nielsen, 1968; Repagulum parvidentatum (Deflandre et Fert, 1954) Forchheimar, 1972; Cretarhabdus crenulatus Bramlette & Martini; C. ingens (Gorka, 1957) Reinhardt, Gorka, 1967; Reinhardtites anthophorus (Deflandre, 1959) Perch-Nielsen, 1968; Chiastozygus quadriperforatus Gartner, 1968; Eiffellithus gorkae Reinhardt,
4

1965; Vekshinella bochothnicae (Gorka, 1957) Verbeek, 1977; Zygodiscus acanthus (Reinhardt, 1965) Reinhardt, 1966; Z. ponticulus (Deflandre, 1954) Reinhardt, 1966; Z. sigmoides Bramlette, Sullivan, 1961; Z. spiralis Bramlette, Martini, 1964; Braarudosphaera discula Bramlette, Riedel, 1954; Lithraphidites carniclensis Deflandre, 1963; Microrhabdulus decoratus Deflandre, 1959; Lucianorhabdus cayeuxi Deflandre, 1959; Rhomboaster cuspis Bramlette, Sullivan, 1961; Tetralithus ovalis Stradner, 1963 et T. trifidus (Stradner, 1961) Bukry, 1973.

Les espèces qui disparaissent sont : Broinsonia parca (Stradner, 1963) Bukry, 1969; Kamptnerius tabulatus Perch-Nielsen, 1968; Biscutum constans (Gorka, 1957) Black, 1967; Markalius circumradiatus (Stover, 1966) Perch-Nielsen, 1968; Repagulum parvidentatum (Deflandre, Fert, 1954) Forchheimer, 1972; Cretarhabdus actinosus (Stover, 1966) Forchheimer, 1972; C. loriei Gartner, 1968; C. surirellus (Deflandre, 1954) Reinhardt, 1970; Cribrocorona gallica (Stradner, 1963) Perch-Nielsen, 1973; Parhabdolithus asper (Stradner, 1963) Manivit, 1971, P. splendens (Deflandre, 1953) Noël, 1969; Corollithion exiguum Stradner, 1961; Lithastrinus floralis Stradner, 1962; Chiastozygus cuneatus (Liulieva, 1967) Cepek, Hay, 1969; C. quadriperforatus Gartner, 1968; Eiffellithus eximinus (Stover, 1966) Perch-Nielsen, 1968; Tranolithus exiguus Stover, 1966; T. manifestus Stover, 1966; Vagalapilla compacta Bukry, 1969; Vekshinella bochotnicae (Gorka, 1957) Verbeek, 1977; V. stradneri Rood, Hay, Barnard, 1973; Zygodiscus acanthus (Reinhardt, 1965) Reinhardt, 1966; Z. deflandrei Bukry, 1969; Z. ponticulus (Deflandre, 1954) Reinhardt, 1966; Lithraphidites carniolensis Deflandre, 1963; Ceratolithoides aculeus (Stradner, 1961) Prins, Sissingh, 1977; Lucianorhabdus maleformis Reinhardt, 1966; Rucinolithus hayi Stover, 1966; Tetralithus gothicus Deflandre, 1959; T. trifidus (Stradner, 1961) Bukry, 1973; T. ovalis Stradner, 1963 et Marthasterites furcatus (Deflandre, 1954) Deflandre, 1959.

3. La zone Lithraphidites quadratus. Definition: l'intervalle stratigraphique compris entre l'apparition des espèces Lithraphidites quadratus Bramlette, Martini, 1964 et Tetralithus quadratus Stradner, 1961 et l'apparition de l'espèce Micula murus (Martini, 1961) Bukry, 1973.

La zone, mise en évidence par les unités ouest-interne, moyennemarginale et externe, caractérise le Maestrichtien moyen et on peut la corréler à la biozone Globotruncana gansseri et à la partie inférieure de la biozone Abathomphalus mayaroensis.

A la partie supérieure du segment caracterisé par la zone Lithraphidites quadratus, 12 espèces dont l'évolution commence au Crétacé inférieur et finit en Turonien, disparaissent (planche); Watznaueria communis R e i n h ar d t, 1964; W. deflandrei (N o ël, 1965) R e i n h ar d t, 1971; Cretarhabdus conicus B r a m l e t t e, M ar t i n i, 1964; Podorhabdus cf. decorus (D e f l a n d r e, 1954) T h i e r s t e i n, 1972; Reinhard-

138

🔑 Institutul Geologic al României

5

139

tites anthophorus (Deflandre, 1954) Perch-Nielsen, 1968; Cylindralithus serratus Bramlette, Martini, 1964; Chiastozygus amphipons (Bramlette, Martini, 1964) Gartner, 1968; C. litterarius (Gorka, 1957) Manivit, 1971; Eiffellithus gorkae Reinhardt, 1965; Tranolithus orionatus (Reinhardt, 1966) Reinhardt, 1966; Zygodiscus diplogrammus (Deflandre, 1954) Gartner, 1968; Tetralithus obscurus Deflandre, 1959.

4. La zone Micula murus. Définition : l'intervalle stratigraphique compris entre la première apparition de l'espèce Micula murus (Martini, 1961) Bukry, 1973, et la première apparition de l'espèce Markalius astroporus (Stradner, 1961) Hay et Mohler, 1967.

En même temps que l'espèce Micula murus de l'association, individualisé dans les mêmes unités que la zone précédente, apparaissent aussi les espèces: Biscutum notaculum Wind, Wise, 1977; Coccolithus pelagicus (Wallich, 1870) Schiller, 1930; Neococcolithes dubius (Deflandre, 1954) Black, 1967; Ceratolithoides kamptneri Bramlette, Martini, 1964 et Dictyolithus quadratus Gorka, 1957.

Les espèces disparaissant au niveau de la limite supérieure de l'intervalle stratigraphique caractérisé par la zone, definissent, en nombre considérable, un seuil bionomique important et mettent en évidence les modifications importantes des conditions de milieu au niveau de la limite Crétacé-Paleogène; Arkhangelskiella cymbiformis Vekshina, 1959:A. specillata Vekshina, 1959; Gartnerago obliquum (Stradner, 1963) Noël, 1970; Kamptnerius magnificus Deflandre, 1959; Biscutum ignotum (Gorka, 1957) Reinhardt, Gorka, 1967; B. melaniae (Gorka, 1957) Reinhardt, 1969; Manivitella pemmatoidea (Deflandre, Manivit, 1965) Thierstein, 1971; Watznaueria barnesae (Black, 1959) Perch-Nielsen, 1968; Cretarhabdus crenulatus Bramlette, Martini, 1964; C. ingens (Gorka, 1957) Reinhardt, Gorka, 1967; Cribrosphaerella ehrenbergi (Arkhangelsky, 1912) Deflandre, 1952; Parhabdolithus angustus (Stradner, 1963) Stradner, Adamiker, Maresch, 1968; P. embergeri (Noël, 1958) Stradner, 1963; Prediscosphaera cretacea (Arkhangelsky, 1912) Gartner, 1968; P. spinosa (Bramlette, Martini, 1964) Gartner, 1968; Reinhardtites mirabilis Perch-Nielsen, 1968; Stephanolithion laffittei Noël, 1956; Chiastozygus anceps (Gorka, 1957) Shumenko, 1976; Eiffellithus turriseiffeli (Deflandre, 1954) Reinh-ardt, 1965; Ahmuelerella octoradiata (Gorka, 1957) Reinhardt, 1966; Lithraphidites quadratus Bramlette, Martini, 1964; Microrhabdulus decoratus D e f l a n d r e, 1959; Ceratolithoides kamptneri B r a mlette, Martini, 1964; Dictyolithus quadratus Gorka, 1957; Lucianorhabdus cayeuxi Deflandre, 1959; Micula concava (Stradner, 1960) Bukry, 1969; M. decussata Vekshina, 1959; M. murus (Martini, 1961) Bukry, 1973; Tetralithus descriptus Martini, 1961; T. pyramidus Gardet, 1955 et T. quadratus Stradner, 1961.

5. La zone Markalius astroporus. Definition : l'intervalle stratigraphi que compris entre la première apparition de l'espèce Markalius astroporus (Stradner, 1961) Hay, Mohler, 1967 et l'apparition de l'espèce *Cruciplacolithus tenuis* (Stradner, 1961) Hay, Mohler, 1967.

La zone s'est individualisée dans les unités ouest-interne, moyennemarginale et externe. L'association de la zone est limitée comme nombre d'espèces et d'exemplaires vis-à-vis des biozones précedentes, contenant, en dehors de la fossile dénominante, les espèces suivantes: Biscutum notaculum Wind, Wise, 1977; Coccolithus crassus Bramlette, Sullivan, 1961; C. pelagicus (Wallich, 1870) Schiller; 1930; Prinsius bisulcus (Stradner, 1963) Hay, Mohler, 1967; Markalius inversus (Deflandre, 1954) Bramlette, Martini, 1964; M. reinhardtii Perch-Nielsen, 1968; Neococcolithes dubius (Deflandre, 1954) Black, 1967; Zygodiscus sigmoides Bramlette, Sullivan, 1961; Z. spiralis Bramlette, Martini, 1964; Braarudosphaera bigelowi (Gran, Braarud, 1935) Deflandre, 1947; B. discula Bramlette, Riedel, 1954; Biantholithus sparsus Bramlette, Martini, 1964 et Rhomboaster cuspis Bramlette, Sullivan, 1961.

L'association correspond à la zone NP_1 (M a r t i n i , 1960), peut se corréler à la zone Globoconusa daubjergensis et à la partie inférieure de la zone Subbotina triloculinoides/Subbotina pseudobulloides et caractérise le premier segment du Paléocène inférieur c'est-à-dire le Danien inférieur.

6. La zone Cruciplacolithus tenuis. Définition: l'intervalle stratigraphique compris entre la première apparition de l'espèce Cruciplacolithus tenuis (Stradner, 1961) Hay, Mohler, 1967 et la première apparition de l'espèce Chiasmolithus danicus (Bramlette, Martini, 1964) Hay, Mohler, 1967.

A la partie inférieure du segment stratigraphique qui y corespond, les espèces suivantes viennent de s'ajouter sur le fond de l'association antérieure: Chiasmolithus bidens (Bramlette, Sullivan, 1961) Hay, Mohler, Wade, 1966 et Coccolithus eopelagicus (Bramlette & Riedel, 1954) Bramlette, Sullivan, 1961, tandis qu'à la partie supérieure, l'espèce Biscutum notaculum Wind, Wise, 1977, cesse son évolution.

L'association, toujours pauvre, individualisée dans les unités cuestinterne et moyenne-marginale, est corrélable avec celle de la zone NP_2 (M a r t i n i, 1970) et avec la biozone de foraminiferes Subbotina triloculonoides/Subbotina pseudobulloides et caractérise le Paléocène inférieur, c'est-à-dire le Danien supérieur.

7. La zone Chiasmolithus danicus. Définition : l'intervalle stratigraphique compris entre l'apparition de l'espèce Chiasmolithus danicus (Bramlette, Martini, 1964) Hay, Mohler, 1967 et la disparition de l'espèce Markalius reinhardtii Perch-Nielsen, 1968.

L'association de la zone Chiasmolithus danicus, pratiquement similaire à celle adiacente inférieure (*Cruciplacolithus tenuis*) en dehors du fait que son niveau apporte aussi l'espèce dénominante, corrélable avec la zone NP₃ au même nom (Martini, 1970) correspond à la partie

Institutul Geologic al României

140

terminale de la biozone Subbotina triloculinoides/Subbotina pseudobulloides et à la partie inférieure de la zone Acarinina inconstans, parmi les biozones de foraminifères. L'association caractérise l'intervalle stratigraphique qui correspond au Paléocène inférieur et a été identifiée dans les unités ouest-interne, moyenne-marginale et externe.

Conclusions. L'étude de la répartition stratigraphique du nannoplancton calcaire du niveau de la limite entre le Crétacé et le Tertiaire, avait démontré que la sequence analysée se fait remarquer par une continuité manifeste de sédimentation entre les dépôts des deux périodes. Les 7 biozones séparées en sont la preuve.

En général, on a reussi à mettre en corrélation les zones du nannoplancton calcaire separées par les subdivisions définies, pour les Carpathes orientales à partir des foraminifères.

BIBLIOGRAPHIE

- Bramlette M. N., Sullivan F. R. (1961) Coccolithophorids and related nannoplancton of the Early Tertiary in California. *Micropal.* 7(2): 129-174, 1-14, New York.
- Bratu E., Gheta N. (1972) Zonarca depozitelor în facies de Șotrile ale Paleocen-Eocenului (Carpații Crientali) pe baza foraminiferelor planctonice și nannoplanctonului calcaros. Slud. cere. geol. geofiz. geogr. ser. geol. 17(2): 323 - 334, 1 - 5, București.
- Bukry D. (1969) Upper Cretaceous coccoliths from Texas and Europe. Univ. Kansas Pal. Inst. 51(2:3-79, 1-40, Topeka-Kansas.
 - Kennedy M. P. (1969) Cretaceous and Eccene coccoliths at San Diego California. Calif. div. Min. Geol. Shorl. Contrib. Geol. Spec. Rep. 100: 33 - 43, 1 - 3, San Diego-California.
- Cepek P., Hay W. W. (1972) Zonation of the Upper Cretaceous using calcarcous nannoplancton. Pal. Abh. Paläobolanik III (3 - 4): 333 - 339, 20 - 21, Stuttgart.
- Costea I., Comşa D. (1979) Upper Cretaceous calcareous nannoplancton in areas of interest for hydrocarbons in the Socialist Republic of Romania. Inst. Geol. Geoph. Memoires XXVIII: 5 - 64, 1 - 13, București.
- Gartner S. jr. (1968) Coccoliths and related calcareous nannofossils from Upper Cretaccous deposits of Texas and Arkansas. Univ. Kansas Pal. Contrib. 48(1): 1 - 56, 1 - 28, Lawrence-Kansas.
- Liulieva S. A. (1967) O komplekse kokkolitov iz Kampanskih otlojenii Dneprovsko-Donetkoi vpadini. D. A. N. SSSR 175(1): 165 - 166,1. Moskwa.
 - (1938) Kokkolitoforidi Maastrihtskih otlojenii Dneprovsko Donetkoi vpadini. Pal. sbornik 5(1): 110 - 116, 1 - 2, Lwow.
- Manivit H. (1971) Nannofossiles calcaires du Crétace français (Aptien-Maestrichtien), Essai de biozonation appuyée sur les stratotypes. *Thèse Bull. C.N.R.S.* 1 - 171, 1 - 32, Paris.
- Martini E. (1971) Standard Tertiary and Quaternary calcareous Nannoplancton zonation. Proc. II plankt. Confer. Rome - 1970 II: 739 - 775, 1 - 4, Rome.

8

142

Perch - Nielsen K. (1967) Nannofossils aus dem Eozän von Dänemark. Ecl. Geol. 60(1):19 - 32, 1 - 17, Basel.

Shumenko S. I. (1976) Izvestkovih Nannoplankton Mezozoic Evropeiskii ceasti SSSR. Izdal. Nauka : 5 - 108, 1 - 30, Moskow.

- Stover L. E. (1966) Cretaceous coccoliths and associated nannofosils from France and the Netherlands. *Micropal.* 12(12): 133 167, -1 9, New York.
- Thierstein H. R. (1976) Mesozoic calcareous Nannoplankton biostratigraphy of marine sediments. Marine micropal. 1:325 362, 1 5, Amsterdam.
- Verbeek J. W. (1977) Calcarcous Nannoplankton biostratigraphy of Middle and Upper Cretaceous deposits in Tunisia, Southern Spain and France. Utrecht Micropal. Bull. 16:4 - 131, 1 - 12, Utrecht.
- Wise S. W. jr., Wind F. H. (1977) Mesozoic and Cenozoic calcareous Nannofossils recovered by DSDP Leg 36 drilling on the Falkland plateau, Southwest Atlantic sectorof the southern ocean. In Rep. Deep Sea Drill. Proj. XXXVI: 269 - 413, 1 - 89, Washington.

DISTRIBUTION STRATIGRAPHIQUE DU NANNOPLANCTON CALCAIRE AU NIVEAU DE LA LIMITE CRÉTACE-TERTIARE.

I. COSTEA, P. IONESCU. Nannoplancton calcaire à la limite Crétacé - Tertiaire dans le flysch des Carpathes Orientales Roumaines.

DIVIOSIONS	STRATIGRAPHIQUES	ZONES DE NANNOPLANCTON À LA LIMITE CRÉTACÉ - TERTIARE DES CARPATHES ORIENTALES DE ROUMANIE	TYGGODISCUS ELEGANS TYGGODISCUS ELEGANS TYGGODISCUS ERECTUS STGGODISCUS ERECTUS TYGGODISCUS ERECTUS TYGGODISCUS ERECTUS CRETARHABDUS CORRADUS CRETARHABDUS CORRADUS CRETARHABDUS CORRALIS CRETARHABDUS CORRALIS CRETARHABDUS CORRALIS CRETARHABDUS SURIRELLUS CRETARHABDUS SURIRELLUS CRETARHABDUS SURIRELLUS TRANOLITHUS EXIMUSS PRONSCUS DECORMONS CRESTRAHABDUS CORMOUNS CRESTRAHABDUS CORMOUNS CRESTRAHABDUS CREATING CRETARHABDUS CORMOUNS CRESTRAHABDUS CREATING CRETARHABDUS CREATING CRESTRAHABDUS CREATING CRESTRAHABDUS CREATING CRESTRAHABDUS CREATING CRESTRAHABDUS CREATING CRESTRAHABDUS CREATING CRESTRAHABDUS CREATING CRESTRAHABDUS CREATING CREA	ZONE À FORAMINIFÈRES
Е	U R	CHIASMOLTHUS		ARININA INÇONSTANS
ÉOCÈN	ÉRIE	CRUCIPLACOLITH Z TENUIS	AUS SUE T	SEUDOBULLOIDES
PAL	N 1.	MARKALIUS ASTROPORUS	s s)BOCONUSA)AUBJERGENSIS
r i e n	SUPÉRIEUR	MICULA MURUS	ABA	ATHOMPHALUS
TRICHT	MOYEN	LITHRAPHIDITES QUADRATUS	GLC	OBOTRUNCANA GANSSERI
MAES	INFÉRIEUR	TETRALITHUS	GLC	DBOTRUNCANELLA STUARTI +
ANIEN	SUPERIEUR	TRIFIDUS	GLC)BOTRUNCANA CONTUSA
C AM P	INFÉRIEUR	CERATOLITHOIDES ACULEUS	GLO G. ST	BOTRUNCANA ELEVATA + TUARTIFORMIS
ANI	ADII	INSTITUTION DE CEC		

ANUARUL INSTITUTULUI DE GEOLOGIE ȘI GEOFIZICA, VOL LIX

Institutul Geologic al României

Imprim.Atel. Inst. Geol. Geof

CORRELATION OF THE PLIOCENE AND LOWER PLEISTOCENE DEPOSITS IN THE DACIC AND EUXINIC BASINS ¹

BY

LUDMILA I. ALENEEVA², ION ANDREESCU³, TODERIȚĂ BANDRABUR³, ANDREI CEPALÎGA², CONSTANTIN GHENEA³, NICOLAE MIHĂILĂ³, VALERI TRUBIHIN²

1. Introduction

This paper represents the results of the researches carried out within a scientific cooperation theme between the Romanian and the Soviet specialists. The object proposed was the elaboration of a scheme of biostratigraphic correlation of the Pliocene and Pleistocene deposits in the Dacic and Euxinic basins.

With this aim in view, complex researches were carried out using biostratigraphic, sedimentologic, paleomagnetic, and absolute age dating methods. A general correlation table of the two basins has been elaborated (Plate II).

2. Correlation of the Pliocene Deposits in the Daeie and Euxinie Basins

Pontian

The term Pontian, proposed by Le Play (1842), was redefined by Barbot de Marny (1869) and then by Andrusov (1897, 1912, 1923, etc.) as representing a chronostratigraphic unit of the upper Neogene in the Paratethys.

The Pontian stage can be defined as the time period during which, in the Paratethys, there were deposited the beds lying between the Upper Meotian deposits and the Lower Dacian (= Kimmerian) formations. In biostratigraphic respect, the Pontian is mainly characterized by the appearance and development, among mollusca, of the Limnocardiids and Dreissenides.

¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981 September 8 - 13, Bucharest. Romania.

² Geological Institute, 7 Pyzhevsky, Moscow, U.S.S.R.

³ Institute of Geology and Geophysics, str. Caransebeş 1, 78344 Bucharest, Romania.

The study of the faunal content of the Pontian deposits in the Euxinic Basin, where the stratotype of the stage exists, allowed Andrusov (1923) to separate two substages within the Pontian: Novorossian and Bosphorian.

Several horizons have been distinguished by different authors within the Novorossian: Odessa Beds (Mihailovskii, 1909); Eupatoria Beds (Davitasvili, 1933); Congeria subrhomboidea Beds (Eberzin, 1967); C. rhomboidea Horizon (Celidze, 1953), etc. Stefanovic (1951) has proposed the Portaferrian substage for the C. rhomboidea Beds and Macarovici et al. (1965) suggested the Odessian substage for the Odessa Beds with Eupatoria Beds in the basement. E berzin et al. (1967) consider that the Portaferrian in the Euxinic Basin corresponds to the C. subrhomboidea Beds, supposed to be an equivalent of the C. rhomboidea Beds in the Dacic and Pannonian basins. The making evident of the C. rhomboidea Beds in the west of the Georgian Soviet Socialist Republic (Celidze, 1953) and the specification of stratigraphic position (Taktakisvilii, 1971; Celidze, their 1974) led to the conclusion that in the Euxinic Basin the Portaferrian includes the C. subrhomboidea Beds at the lower part and the C. rhomboidea Beds at the upper part. In this case horizon IV from Kamyshburun. assigned by Andrusov (1923) to the Bosphorian, is to come back to the Portaferrian.

At present, in the Euxinic Basin, the Pontian is subdivided into Novorossian, Portaferrian and Bosphorian, the meaning of the first substage being obviously different from that proposed by Andrusov (1923).

In the Dacic Basin, the Pontian is subdivided like in the Euxinic Basin, the only difference being that for the Lower Pontian the term Odessian is used, which corresponds to the beds with Eupatorina littoralis and Congeria rumana. The Portaferrian includes the beds with C. subrhomboidea, C. rhomboidea and the lower part of the beds with Prosodacnomya sturi sabbae, and the Bosphorian comprises the upper part of the beds with P. sturi sabbae, the beds with Phyllocardium planum, Parapachydacna, Pontalmyra, Dreisenomya, etc. (Andreescu, 1975; 1977; 1979; Motaş and Papaianopol, 1977; Marinescu, 1975, etc.).

In spite of the diversification of the Pontian lithofacies, the correlation of the Pontian, as well as of its three substages in the Dacic and Euxinic basins is quite easy due to the similar faunal content as a result of the permanent paleogeographic connections between the two basins.

The Pontian deposits studied in paleomagnetic respect, in the section of the Sărățelu Valley (Berca) in the north-eastern part of the Dacie Basin, pointed out only reversed polarities; it made C e p a l î g a (1980) assign the entire sequence to the lower part of the Gilbert epoch, ranging from 4.9 to 5.2 m.y (Plate I). Reversed polarities were also rendered evident by the paleomagnetic analyses carried out by P e v z n er and C i k o v a n i (1978) on the Pontian deposits in the Kerci-Taman region. S e m e n e n k o and P e v z n e r (1979) assigned the above-mentioned interval to epoch 6 of reversed magnetism (about 6.3 - 5.7 m.y.).

In these circumstances we consider that the paleomagnetic results obtained up to now on the Pontian deposits of the Dacic Basin have to be

144

regarded as preliminary, further details will clarify the discrepancies concerning their calibration.

Dacian

The Dacian stage, proposed by T e is s e y r e (1907), redefined by A n d r e e s c u (1972), includes beds with fauna of transition from the Pontian to the Romanian. In the Dacic Basin, during the Dacian the evolutive lines of the limnocardiids and congerias end; it is the time interval when the beds with *Pachydacna* (= Lower Dacian = Getian) (M a c a r o v i c i et al., 1965; redef. E b e r z i n et al., 1966) and the beds with *Pachyprionopleura* (= "*Psilodon*") ex gr. *haueri* and *P*. ex gr. *neumayri* (= Upper Dacian = Parscovian) (A n d r e e s c u, 1972) have been deposited.

The Lower Dacian fossil assemblages are generally unitary in the Dacic Basin. Within them there predominate the limnocardiids (Pachydacna mirabilis, P. natella, Parapachydacna cobalcescui, P. serena, Prosodacna ex gr. longiuscula, P. semisulcata, Stylodacna heberti, Zamphiridacna cucestiensis, Limnodacna ukrainica, Dacicardium rumanum, Tauricardium olteniae, Pachyprionopleura munieri, etc.), beside which congerias and fresh-water mollusca are to be found. Among the fresh-water mollusca an important part is played by unionids (Rumanunio rumanus, Psilunio ex gr. neumayri, Potomida ex gr. psilodonta, etc.) and viviparids (Viviparus argesiensis, V. ex gr. rumanus, V. pannonicus, etc.). All the mentioned assemblages belong to the Pachydacna mirabilis Zone (A n d r ee s c u, 1978, 1979).

The Parscovian faunal assemblages are dominated, in the area of the Dacian stratotype (Slănicu de Buzău Valley, in the south-eastern part of the Dacic Basin), by "psilodonts" evolved from the haueri and neumayri groups, occurring beside Horiodacna rumana, Prosodacnomya sturi sturi, P. stenopleura, Zamphiridacna zamphiri, Limnodacna rumana, Congeria mirabilis, C. turgidopsis, C. caucasica, C. prahovensis, Dreissena div. sp., Rumanunio rumanus, Viviparus rumanus, etc.

In the western part of the Dacic Basin the Upper Dacian faunal complexes are characterized by the participation of numerous freshwater mollusca (Psilunio neumayri, Potomida recurvus, P. saratae, R. rumanus, Viviparus rumanus, V. suessi, etc.) beside which there occur: Congeria turgidopsis, C. caucasica, C. ex gr. rhodonica, Horiodacna rumana, P. stenopleura, P. sturi sturi, Pseudocatillus donacoides, Parapachydacna div. sp., etc. The Parscovian fossil assemblages belong to the P. haueri-P. neumayri zone (A n d r e e s c u, 1979).

Kimmerian

In the Euxinic Basin, the Kimmerian proposed by Andrusov (1907) occupies a time interval comparable with the Dacian stage, occurring between the Pontian and the Kujalnikian (=Pakveşian) or between the Pontian and the Egrissian (Taktakisvili, 1978).

At present, the Kimmerian is subdivided into three substages: Azovian, Kamyshburunian and Panticapean; however, recent researches

10 - c. 50

145

4

(Semenenko, 1975; Semenenko, Liuleva, 1976; Taktakisvili, 1978) indicate that the Panticapean is an equivalent of the Kamyshburunian.

The direct correlation of the Dacian and the Kimmerian is more difficult particularly as regards the upper part, where there occur several differentiations in the Parscovian and the Kamyshburunian faunal assemblages as a result of the periods of breaking of the connections between the Dacic and the Euxinic basins. Consequently, endemic faunas occur, e.g. the highly specialized *Prosodacna* belonging to the P. macrodon groups, typical of the Kamyshburunian-Panticapean, have not reached the Dacic Basin, and the evolved "psilodonts" have not been found in the Euxinic Basin.

There are, however, common faunal elements which make it possible to correlate the Parscovian with the Kamyshburunian-Panticapean. Thus, in Preazovia, E b e r z i n and S e m e n e n k o (1966) have detected the species *Horiodacna rumana*, and the Duab Beds, in the west of the Georgian Soviet Socialist Republic, contain several congerias (*C. caucasica*, *C. mirabilis*, etc.), limnocardiids (*P. donacoides*) and unionids, occurring in the Upper Dacian, as well.

With a view to rendering evident some new possibilities of correlation the Dacian deposits have been investigated in paleomagnetic respect on some profiles in the east of the Dacic Basin. The analyses have indicated that: the Romanian-Dacian boundary (= between the Viviparus bifarcinatus and P. haueri-P. neumayri zones) coincides with the Cochiti event (about 3.8 m.y.) in the Gilbert epoch; the Upper Dacian-Lower Dacian boundary is at the upper part of another episode of normal polarity, possibly Nunivak (about 4.05 m.y.) in the Gilbert epoch; the lower boundary of the Dacian corresponds to an interval of normal polarity considered by C e p a l î g a (1980) as the Tvera event (about 4.85 m.y.) in the lower part of the Gilbert epoch (Plate II).

The paleomagnetic analysis of the Kimmerian deposits in the Kerci-Taman region led S e m e n e n k o and P e v z n e r (1979) to the conclusion that the Kimmerian corresponds to the Gilbert epoch and to epoch 5, being included in a time interval (3.4 - 5.8 m.y.) wider than that considered by C e p a l î g a (1980).

Romanian

The Romanian stage has been proposed by $K r e j c i \cdot G r a f (1932)$ and redefined by M i h a i l a (1969) and A n d r e e s c u (1972). In the Dacic Basin, this stage represents the chronostratigraphic unit delimited by the Dacian stage at the lower part and the Lower Pleistocene at the upper part.

At the stratotype, located on the Slănicu de Buzău Valley, in the east of the Dacic Basin, the Romanian includes the beds with smooth unionids and *Viviparus bifarcinatus*, the beds with sculptured unionids, as well as a pile of nonfossiliferous deposits representing a part of the Cindeşti Beds.

In the same stratigraphic area the Romanian deposits have been assigned, from the lithostratigraphic viewpoint, to the Rîmna Formation and the Cindesti Formation (Ghenea et al., 1981).

Andreescu (1978, 1979) has proposed, on the basis of a rich fauna of fresh-water mollusca, a biozonation of the Romanian, separating three zones : Viviparus bifarcinatus (with two subzones : Jazkoa sturdzae and Psilunio sibinensis), Rugunio lenticularis (with four subzones : Rytia brandzae, Pristinunio pristinus, Rytia bielzi, and Cuneopsidea iconomiamus) and Ebersininaia milcovensis-Rugunio riphaei (with four subzones : E. milcovensis, E. geometrica, Unio kijalnicensis, and Bogatschevia tamanensis, R. riphaei).

The Romanian formations in the Dacic Basin, as well as their equivalents in the Euxinic Basin, contain numerous remains of fossil mammals which allowed the correlation with other deposits of the same age in Europe.

Thus, in the north-eastern part of the Dacic Basin, V. bifarcinatus Zone corresponds to the deposits with mammal fauna of Beresti and Mälusteni (= Bereşti Beds, Ghenea, 1968), equivalent with the lower part of the "Moldavian Complex" (Kuchiurgan) in the south of the Soviet Union (Ghenea et al., 1981). In the interval of the R. lenticularis zone, in different sectors of the Dacic Basin remains of fossil mammals have been reported from the Cindesti Formation at Tulucesti, Cernătesti, Covrigi, etc., correlable with the upper part (Kotlovina) of the "Moldavian Complex" in the south of the Soviet Union and with the Lower Villafranchian in the south-western Europe (Ghenea et al., 1981).

Corresponding to E. milcovensis - R. riphaei Zone, mammal faunas have been reported (Feru et al., 1978) from Milcovu din Vale, Slatina, Cherlesti, equivalent with the Haprovian Complex in the south of the Soviet Union and with the Middle Villafranchian (Roccaneyra, St. Vallier, Olivola, etc.) in the south-east of Europe (G h e n e a et al., 1981).

The data referring to the biostratigraphy of the Romanian point out that this stage corresponds almost entirely to the Akchagylian stage, most of the zones and subzones distinguished in the Dacic Basin (An dreescu, 1979) occurring also in the Euxinic-Caspian Realm.

The paleomagnetic analyses carried out on samples from the stratotype section of the Romanian as well as from other sections (Table 1). indicated that on the Slänicu de Buzău Valley the base of the Romanian is situated in the upper part of the Gilbert epoch, corresponding to the Cochiti event (≈ 3.8 m.y.); the Lower Romanian-Middle Romanian boundary coincides with the limit between Gilbert epoch and Gauss epoch $(\approx 3.4 \text{ m.y.})$ (Ghenea et al., 1981). The Middle Romanian-Upper Romanian boundary, that is the limit between R. lenticularis and E. milcovensis - R. riphaei zones in the profile on the Olt Valley, at Slatina, is located in the upper part of the Gauss epoch, for which an age of about 2.7 - 2.6 m.y. is estimated (Andreescu et al., 1981). In the same profile, the limit between the last zone of the Romanian and the first zone of the Quaternary - Unio apscheronicus - corresponds to an interval of normal polarity of the Matuyama epoch, possibly the Olduvai event (about 1.7 - 1.9 m.y) (Andreescu et al., 1981).

From the above-mentioned data there results that the Romanian stage is a little older than the Akchagylian stage; in this case the lower boundary of the Romanian would correspond to the Kujalnikian base (= Pakveshian). The upper limit of the Romanian corresponds to the Akchagylian-Apsheronian boundary in the south of the Soviet Union, marked by the same zone — U. apscheronicus (C e p a l i g a, 1972; N i k i-f o r o v a et al., 1976).

3. Correlation of the Upper Pliocene and Lower Pleistocene Lithostratigraphic Units

The Cindesti Formation (= Cindesti Beds; M razec and Teisseyre, 1901). In the Dacic Basin a large area of the Carpathian Foredeep, starting from the upper part of the Middle Romanian, there developed a continental formation with molasse character, represented by alternations of pebbles, conglomerates, sands and clays. The sedimentological characters are determined by the prevalence of the pebble and conglomerate banks (Arges, Dimbovița, Prahova, Buzău, Rîmnic valleys) at the upper part. Towards the lower part there is a gradual decrease of the thickness of the pebble banks concomitantly with the reducing of the diameter of the pebbles. The thicknesses frequently reach hundreds of meters, and in the Carpathian Bend Zone they can exceed 1,000 m. The stratigraphic position of the Cindeşti Formation can hardly be estimated because of the extremely reduced paleontologic content. However, the stratigraphic bulk has been estimated on the basis of paleomagnetic analyses on certain sections characterized by continuity of sedimentation in the Romanian-Lower Pleistocene time span. Thus, at Beceni and Plescoi the coarse intercalations constituting the Cindesti Formation are individualized beginning with the level of 2.7 - 2.5 m.y. (Plate I).

As regards the comparison with the Euxinic Basin, the time interval corresponding to the deposition of the Cîndești Formation corresponds to a great extent to the Middle and Upper Akchagylian (Table 2).

The Frätești Formation. In the Lower Pleistocene, in the central and southern part of the Dacic Basin there deposited alluvial accumulations consisting of a sequence of pebbles and sands, separated by clayey intercalations. In the western part (west of the Arges River), such deposits are found in the constitution of the interfluves, pebbles and rolled boulders, with thicknesses of tens of meters. In the eastern part of the Dacic Basin, the processes of subsidence determined the sinking of these deposits under more recent formations. Numerous drillings in the area of Bucharest indicated the presence of such deposits at depths varying between 100 - 300 m, with greater thicknesses (100 - 200 m), and disposed in three banks of pebbles separated by clayey intercalations.

The Frätești Formation was first described under the name of "Frătești Beds" (L i t e a n u, 1953), the author referring to the lithologic constitution and the paleontologic content. In respect of the paleontologic content, it is to be mentioned the frequency of remains of *Archidiskodon meridionalis* reported from several points of the Dacic Basin. There are

also reported remains of *Libralces gallicus* and *Dicerorhinus etruscus*, on the basis of which the period of alluviation of the paleofluve, which generated the Frätesti Formation, was assigned to the Lower Pleistocene.

The Lower Pleistocene in this region occurs better characterized by the existence of rich faunas of mammals. The best-known deposit is to be found in the Oltet Valley, at Tetoiu (Bugiulești). The mammal assemblage is characterized by the presence of a single elephant (Archidiskodon meridionalis) beside Paradolicophitecus geticus, Allohipus stenonis, Dicerorhinus etruscus, Nyctereutes, Trogontherium boisvilleti, Megalovis, Leptobos, Pruealces gallicus, Canis etruscus (S a m s o n and R ă d u l e s c u , 1972). The mentioned fauna assemblage can be correlated with the Odessian Complex in the Euxinic-Caspian Realm and the Unionid biozones in the Olt Valley allow their equivalence with the lower part of the Lower Apsheronian (Plate II).

The Uzunu Beds. In some points in the southwestern area of the Dacic Basin (Uzunu, Stoenești), at the upper part of the "Frătești Formation", one can observe sandy deposits with marly clayey intercalations with a molluscan fauna, represented by: Bogatschevia sturi, Corbicula fluminalis, Pisidium amnicum, Sphaeridium corneum, Viviparus craiovensis, V. diluvianus, V. romaloi, V. geticus, Litoglyphus naticoides, Planorbis planorbis, Anisius (Spiralina) vortex, etc.

The Uzunu Beds with *Bogatschevia sturi* correspond to the Boshernitian horizon in the Euxinic Basin (Lower Pleistocene).

The Coconi Beds (Marly Complex). In the eastern area of the Dacic Basin, a pile of marls and clays with thin intercalations of fine sands overlies the Fräteşti Formation, and in some sectors lies concordantly over the Uzunu Beds. They have been described first in the Dacic Basin under the denomination of "Marly Complex" (L it e a n u, 1953). This horizon has been found in all the drillings carried out in the area of Bucharest and in other points towards the eastern part of the Dacic Basin. They outcrop on the Mostiştei Valley as a sequence of grey marls with rare lenticular intercalations of marly fine sands.

The paleontologic content is characterized by the presence of species of Corbicula cf. fluminalis, Valvata piscinalis, V. sibinensis sibinensis, Pisidium priscum, P. amnicum, P. clessini, Sphaeridium rivicola, Planorbis planorbis, P. corneus, Viviparus diluvianus, etc.

4. Conclusions

The biostratigraphic data known up to now in the two realms of sedimentation — Dacic and Euxinic — have been correlated for the first time with magnetostratigraphic researches. A more precise dating and correlation of the Pliocene and Pleistocene formations have been achieved.

For the Upper Pliocene and the Lower Pleistocene the results have been in agreement with the general image on the stratigraphic volume of the mentioned intervals; however, the evidence referring to the Lower Pliocene seems to be surprising.

Thus, if the boundary between the Phyllocardium plannum plannum Zone (Upper Pontian) and the Pachydacna mirabilis Zone (Lower Dacian – Lower Kimmerian) coincides with the Tvera event (~4,9 m. y.) of the Gilbert epoch and the Pontian sequence indicates even for the levels only reversed polarity (assigned to the Gilbert epoch) a very large volume of sediments (the Pontian) have been deposited during a time interval ranging approximately between 4.9 - 5.2 m.y.

There are necessary minute studies on profiles with continuity of sedimentation in the Meotian-Dacian.

REFERENCES

- Andreescu I. (1972) Contribuții la stratigrafia Dacianului și Romanianului din zona de curbură a Carpaților Orientali. D. S. Inst. geol., LVIII/3 (1971), București.
 - Rădulescu C., Samson P., Cepaliga A., Trubihin V. (1981) Chronologie (Mollusques, Mammifères, Paléomagnétisme) des formations plio-pléistocène de la zone de Slatina (Basin Dacique), Roumanie. Trav. Inst. Spéol. E. Racovitza, XX. p. 127 - 137, București.
- Andrusov N. I. (1897) Nekotorie zameciania ovzaimnih sootnoşeniah verhnetreticinih otlojenii Rosii, Ruminii i Austro-Vengrii. Jizbr. tr. II, pp 26 - 31. Izd. AN SSSR 1963, Moskva.
- Bandrabur T. (1971) Geologia cimpiei du nărene dintre Jiu și Olt. Inst. Geol. St. tehn. econ. J, 9, București.
- Cepaliga A. (1972) Neogene-Quaternary Boundary on base of freshwater Molluscs fauna., Inst. Geol. "The Bound. Neog. - Quat". 3, Moscow.
- Feru M., Rådulescu I., Samson P. (1978) Biostratigraphie (Micromammifères des dépôts plio-pléistocènes de la zone de Slatina. *Trav. Inst. Spéol. "E. Rac-wilza*" XVII, București.
- Ghenea C., Andreescu I., Bandrabur T., Cepaliga A., Mihăilă N. Trubihin V. (1980) Bio-and Magnetostratigraphic Correlations on the Pliocen^e and Lower Pleistocene Formations of the Dacic Basin and Braşov Depression (Romania). D.S. Inst. geol. geofiz., LXV/2, București.
 - Bandrabur T., Mihäilä N., Rädulescu C., Samson P., Rädan S (1981) Pliocene and Pleistocene deposits in the Braşov Depression. Guidebook for th SEQS Field excursion 1 – 8 June 1981. Geological and Geophysical Institute, Bucuresti
- Liteanu E. (1953) Limita superioară a Terțiarului în Cîmpia Română. Sl. tehn. econ. E, 2, București.
- Marinescu F., Ghenea C., Papaianopol I. (1981) Stratigraphy of the Neogene and the Pleistocene Boundary. 12th Congress Carpatho-Balkan Associat. Guid:book-20, Inst. geol. geophys., București.
- Mihăilă N. (1969) Romanianul, termen stratigrafic final al Neogenului și stratigrafia sa din sectorul Rm. Vilcea-Vilsănești. D.S. Com. geol., LIV/3, București.
- Semenenko V. N., Pevzner M. A. (1979) Correliația verlinego mioțena i plioțena Ponto-Caspia po biostratigraphiceskom i paleomagnitnim danim. Izv. AN SSSR, Geol. 1, p. 5 - 15, Moskva.

150

S.

Taktakşvili I. G. (1978) Egriskii iarus, novala stratigraficeskala ediniţa plioţena zapadnoi Gruzii. Soobş. AN SSSR, 90. 3, p. 737 - 740, Tbilisi.

QUESTIONS

P. Stevanović. The title of the paper must be modified as it deals only with the late Pliocene, the beginning of the Dacian, not with the whole Pliocene.

Answer: The title of the paper must not be changed as we consider that the Pliocene starts concomitantly with the Dacian, not with the Pontian or the Meotian as previously accepted.

Institutul Geologic al României

Institutul Geologic al României

Institutul Geologic al României

ANUARUL INSTITUTULUI DE GEOLOGIE ȘI GEOFIZICĂ. VOL. LIX.

CORRELATION DIAGRAM OF THE PLIOCENE AND PLEISTOCENE DEPOSITS FROM THE SOUTHERN PART OF THE SOWIET UNION AND ROMANIA

		U.	S.	S.			S. R.					R	0	M	A	NIA	WE: EUR		
O- ETIC	CRC	ONOSTRATIGRAPHICAL SUBDIVISIONS	INTERNA	RNAL BASINS			BIOSTRATIGRAPHICAL SUBDIVISIONS				CHRONOSTRATIGRA- PHICAL SUBDIVISIONS			1- B	MOLLUSCS)	MAM	1 A L S	CHRON	
			BLACK SEA	CASI	PIAN SEA	Bi	g mammals	Micromammals	Fresh water moliuses	1			1.0			Fauna	Type localities	FACIES	FAC
		MIHAILOVIAN		TIL	JRANSKIAN	troc	Archidiskodon Iontherii (wusti)	Microlus zalticipoides	Crassiana		MID	DLE	MOSTISTEA			P trogontherii	I C Frimu		SICIL
0		MOROZOVIAN	CIAUDIAN		UPPER	VIAN	Archidiskodon	Prolagurus pannonicus Pitymus hintoni	Anodonta cetiensis]								100	
MIL		NOGAISKIAN				AMAI	tamanensis	Prolagurus praepanno-	Pseudosturia caudata				COCONI BED	S					
ARA	Z				MIDDLE	F							(Marly complex)		1		and the second second	1010	
Σ.	ш	JEVANCOVIAN						Prolagurus praepanno-	Bogatschevic scutum		1997							1	
-	U			z							-	Y			C. C. S. S. S.			and a	-
A	0	BOSERNITIAN		N-A		z			Bogatschevia sturi	0	L I	ш	UZUNU BED	S	Bogatschevia sturi		Irimești	1	
	S	The second second	GURIAN	ROI	21.6	SA	Archidiskodon	1 1 1 1 1 1			3	3	1					1	
>				Шн		E S	meridionalis	Lagurodon arankae		S		D						1 1 1 2	
	ш	DOMASKINIAN		PS	LOWER	0 0	meridionalis	Allophaiomys	1. Mar 1. 19	-			\$1			A. meridionalis	Tetoiu II	1 33	
-	0		1.22	1				pliocaenicus	Unio apscheronicus	ш	-	-	ATE			meridionalis		7	
			Ser Ser										F R						
	1.912									L				Un	io apscheronicus		Slatina III	A.	. <
				-	-							1		-				-	(c
		FERLADANIAN						Villanya exilis	Potamida tamanensis				NOIL		riphaei		Cherlest	-	1,
A			10 C - 5		UPPER	Z							LAM	ū	Unio			-	V
	14	KRIJANOVSKIAN				1 1		Villanya lagurodontoides	Unio kujalnicensis			~	a O H	DHA	kujalnicensis		Stating II	0	
			181 - S			00	Archidiskodon						-		Ebersioingia			-	:
a Z		ACCULAEVIAN				a	gromovi	Mimomys pusillus	Potamida				E.S.1	NON	geometrica		Slatina I	-	
		State and South	z			HA		1 Start The	geometrica		z	4	U N I	Z		Archidiskodon		A	
	ш		4	z			-			1		5	0	COVI		gromovi			
-	*z	CISTOPOLIAN		-	MIDDLE			pliocaenicus	Anodonta rustavelli					MIL	Ebersininaia			-	
	ш		× 2	7 1				Synoptomys			-			u u	Inncovensis			u	1
S	0	-	z s	A 6			and the second	mimomitormis					•		and the second	14	Milcovul din vote	A	L
5	0		1	-				Promimomys	Sector Sector	ш	z							1	
	_	VESELOVIAN	A O	0		Z		stehlini	Cuneopsidaea sudovskii						C. iconomianus	Archidiskodon ruma- nus, A. arvernensis	Cernatești -	-	
5	٩		7	A		A		Villanyia petenyi		1.1.1	A	ш	1.1	ARIS		Z. borsoni	tuluçeşti	-	1
MA			D				arvernensis			ż		-	4	CULI				-	
A	4 6	PORATIAN SUPERIOR	¥			>		Dolomys milleri	Rytia bielzi		Σ	0		ENTI	Rytia Dielzi			1	1
MAM	æ				LOWER	A	Dicerorhinus megarhinus			†		0	Z	0 1	P. pristious		Ilieni	>	
0	ш	KAHULIAN			LUWER			Pliomys kovalski	Rugunio lenticularis		0	-	ATIC	GUNI	P. pristinus		larăș		
	đ						1				α	Σ	MA	RU	Rytya brandzae				1
_	0.			<u> </u>			S. AND T			0			РO	-	1.9				1
	P			1.5				Promimomis moldavicus	Psilunio sibinensis			В	A N	ATUS	P. sibinensis		Devent	1 /	1
		KUCIURGANIAN	11.14 .14					Constant of the				ΝE	Σ.	SCINA		A. arvernensis, Z.bor-	Malusteni-	11	
										0		0	ц. ,	BIFAF	J. sturdzae	megarhinus	Căpeni- Vîrghis	ľ	
a						-					-	7	and the section is	>	1		Incare and a second second		
			1.21.25.2011	PR	ODUCTIVE				Rumanunio	11200		IAL					Den er sen fa	2	
ω	ш	Curra Martin Vale		1.					rumanus	1		C01	z	Pac	hyprionopleura			A	
	Z.	A Charles and Co						A Martin Strange				RSI	ATIC				and the second	1	
	U		. z	5	SERIES			1.	a final and a second second	-	Z	PA	ORM	1					1
	0		A					A CARL AND A CARL	19 19 19 19	1.20	A	-	E E	-				Z	
	4		æ				1			٩	-		z w					-	
			ш								U	z	WIC		Pachydacna				
			Σ					And States			A	A	A (1.85	mirabilis			0	
0	00		-									- -	GUR.				and the second		
	- 5		¥									ш							
	<u>.</u>				•							5			1			D	
NEW								Carlos Programme						1				x	
	U N								and the second										
	OCE		4						Contraction of the		z	100				CARSES AND			
-	PLI		- -						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and and	AI						in the second		
H	R	In the second second	Z						State of the State of State	12.58	H Z			195					
01	>		٩	1 15 25						ALC: NOTE:	A REAL PROPERTY.	ALL ALL THE		1	Call And And And And And	2/24-2			1

.

BIOCHRONOLOGY AND CHRONOSTRATIGRAPHY OF THE UPPER PLIOCENE AND LOWER PLEISTOCENE IN THE DACIC BASIN¹

BY

ION ANDREESCU²

A biochronologic scale based on mollusca has been proposed (A n - d r e e s c u , 1978, 1979) for the Sarmatian-Lower Pleistocene interval in the Dacic Basin. This scale includes 14 biozones (12 for the Upper Neogene and 2 for the Lower Pleistocene) marked $NSM_1 - NSM_{12}$ (NSM = Upper Neogene Mollusca) and QM_1 , QM_2 (Quaternary Mollusca).

= Upper Neogene Mollusca) and QM_1 , QM_2 (Quaternary Mollusca). Zones NSM_1 — Abra reflexa, NSM_2 — Cryptomactra, NSM_3 — Sarmatimactra podolica — S. fabreana, and NSM_4 — S. bulgarica belong to the Sarmatian: zones NSM_5 — Abra tellinoides and NSM_6 — Congeria panticapaea tournoueri-Andrusoviconcha novorossica navicula are referred to the Meotian; zone NSM_7 — Eupatorina littoralis and the first two subzones (NSM_{8a} and NSM_{8b}) of zones NSM_8 — Prosodacnomya sturi sabbae characterize the Pontian; subzone NSM_8 — Pachydacna mirabilis and zone NSM_9 — Pachyprionopleura haueri — P. neumayri belong to the Dacian, and the Romanian includes zones NSM_{10} — Viviparus bifarcinatus, NSM_{11} — Rugunio lenticularis and NSM_{12} — Ebersininaia milcovensis-Rugunio riphaei.

General Considerations

For the making up of the Romanian biochronologic scale we have referred to the main fossil groups which may provide undoubtful biostratigraphic markers. These fossil groups are first of all represented by fresh-water molluscan faunas, among which unionids and viviparids are to be mentioned.

In the calibration of the molluscan zones we have taken into account the paleomagnetic data, the result of our collaboration with geologists from the Institute of Geology of the Academy of Sciences of the USSR-Moskow (Andreescu et al., 1981; Ghenea et al., 1982).

¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981 September 8 - 12, Bucharest, Romania.

² Institute of Geology and Geophysics, str. Caransebeş 1, 78344 Bucharest, Romania.

The study of the Romanian fresh-water molluscan assemblages pointed out the possibility to outline three main stages in their evolution and succession.

The first stage coincides with the time interval formerly called Lower Romanian (A n d r e e s c u, 1972). It includes a fauna of unionids and viviparids relatively poor in new genera and species.

The second stage is marked by the outburst of the "Levantine fauna" of unionids and sculptured viviparids. The succession of different taxa is rapid, spectacular occurrences and extinctions being recorded. The proliferation of fresh-water molluscan fauna occurs concurrently with the development and considerable spreading of Lower Villafranchian mammal fauna (Perrier-Etouaires type), unlike the previous stage in which the mammal faunas preserve numerous elements of the advanced Ruscinian fauna. In the Villafranchian, among the large mammals mention should be made of the appearance and spreading (in Europa) of Archidiskodon rumanus, genus Equus, genus Bos (= Leptobos), namely the group ELE (T o b i e n, 1970). Concurrently, among the small mammals the first appearance of genus Lemmus within the assemblage with Mimomys polonicus is recorded in Central and South Europe (C h a l i n e, 1977).

The third stage of evolution of the Romanian fresh-water molluscan faunas is characterized by the extinction of many genera and species of the previous stage concurrently with the appearance of new genera and species; however, one may say that on the whole the faunas become poorer. In this interval the boreal elements often alternate with the termophile ones. At the same time in Europe, within the Middle Villafranchian mammal faunas, several new species appear (Archidiskodon gromovi, Croizetoceros ramosus, Pliomys kretzoi, Mimomys rex, M. pliocaenicus, etc.) beside Anancus arvernensis, Equus stenonis, Dicerorhinus etruscus, Leptobos etruscus, etc. (Tobien, 1970; Ballesio et al., 1973; Kowalski, 1973; Chaline, 1977, etc.).

Succession of the Biozones

The three above-mentioned stages of evolution of the Romanian molluscan faunas mostly correspond to three biozones which may be regarded as superzones (Plate I).

Zone $NSM_{10} - Viviparus$ bifarcinatus (Andreescu, 1978) is defined by the occurrence interval of index species, limited at the upper part by the development of sculptured unionids. The fossil assemblage of the zone is dominated by smooth-shelled unionids, dreissenes, carenate vivipars, melanopsides, neritines, etc. In the Buzău-Milcov area, in the eastern part of the Dacic Basin, in the lower part of the zone NSM₁₀, species *Prosodacnomya sturi sturi* (Cob.) is found, endured from zone NSM₉.

Considering the succession of some marker taxa, zone NSM_{10} has been subdivided into two subzones :

 $NSM_{10a} - Jazkoa sturdzae$

NSM_{10b} – Psilunio sibiensis

Zone NSM_{10} has a wide spreading within the Paratethys Realm; it can be delimited both in the Pannonian Basin (V. bifarcinatus + V. stric-

2

Security 214

turatus zones) and in the whole Dacic Basin. In the Euxinic Basin subzone $NSM0_{100}$ has its equivalent in the upper part of the Duab Formation. Subzone NSM_{10b} is to be found, in the northern part of the Euxinic Basin, in the lower part of the Poratian (= P. sibinensis — Potomida sandbergeri Zone) (N i k if o rova et al., 1976).

Zone NSM_{10} spans the time interval corresponding to the Proto-Villafranchian mammal faunas from Berești and Mălușteni, equivalent with the upper part of the "Moldavian (Kuchurgan) Complex" in the south of the USSR and with the mammal deposits at Weze, Ivanovce, Csarnota, Wölfersheim, Perpignan, Sete, etc. in Central and Western Europe (= zone MN_{15} , M e i n , 1975) (Plate I).

Zone NSM_{11} — Rugunio lenticularis (A n d r e e s c u , 1978) corresponds to the interval during which, in the Paratethys, the sculptured unionids and the ornamented vivipares develop luxuriantly; beside them smooth unionids can also be observed. Most of the taxa of this zone have a range equal to that of zone NSM_{11} . Other taxa, particularly representatives of the genera *Potomida*, *Psilunio*, *Cyclopotomida*, some vivipars, etc., are also to be found in zone NSM_{10} . Numerous species of unionids and vivipars proper to zone NSM_{11} have a reduced range that allowed the separation of four subzones (A n d r e e s c u , 1979) (Plate I):

- NSM_{11a} Rytia brandzae
- NSM_{11b} Pristinunio pristinus
- NSM_{11c} Rytia bielzi

3

NSM_{11d} – Cuneopsidea iconomianus

Subzone NSM_{11a} corresponds to Viviparus nothus Zone and possibly to the lower part of V. sturi Zone in the Pannonian Basin and to Rugunio lenticularis (partim) Zone in the Euxino-Caspian Realm, located in the upper part of the Lower Poratian (N i k i f o r o v a et al., 1976; A n d r e - e s c u , 1979).

In the Pannonian Basin the equivalent of subzone NSM_{11b} is represented by the middle part, possibly the upper part too, of V. sturi-V. ornatus Zone. In the Euxinic Basin subzone NSM_{11b} characterizes the upper part of the Poratian; it lies between R. lenticularis and R. bielzi zones (T c h e p a l y g a, 1972; N i k i f o r o v a et al., 1976).

Subzone NSM_{11c} is characterized by the scarcity of species found in the previous subzones, the appearance of new species or the predominance of taxa with a previous reduced frequency (Andreescu, 1981; Andreescu et al., 1981). The faunal assemblage of subzone NSM_{11c} points to a possible correlation with the lower part of Viviparus hoernesi Zone, eventually with the final part of V. sturi-V. ornatus Zone in the Pannonian Basin and R. bielzi Zone in the Euxino-Caspian Realm.

Subzone NSM_{11d} marks the time-interval in which most species of unionids and viviparids, typical of the former subzones, occur sporadically or become extinct. It is to be mentioned that even the zone marker species (*R. lenticularis*) is recorded only in places. On the other hand the representatives of boreal unionids of the Unio group occur more frequently. The same process of extinction affects most of the sculptured viviparids.

On the whole, zone NSM_{11} can be regarded as an equivalent of the R. lenticularis + R. bielzi + Cuneopsidea sudovskii zones separated

by T c h e p a l y g a (1972) within the Upper Pliocene unionid fauna in the USSR.

In the interval of zone NSM_{11} , in different areas of the Dacic Basin, fossil mammal remains have been recorded from the Cindeşti Formation. The best known mammal faunas are those from Tuluceşti and Cernăteşti, which have been correlated (S a m s o n, R ă d u l e s c u, 1973; S a m s o n, 1976) with the Upper "Moldavian Complex" in the south of the USSR, corresponding to the Vialette faunas, recently redated at 3.2 --2.6 m.y. (=Lower Villafranchian) (B a n d e t et al., 1978). Consequently one may admit the equivalence of zone NSM₁₁ with zone MN₁₆ (M e i n, 1975, 1979), within which the start of the Mimomys polonicus - M. pliocaenicus phyletic-line is recorded simultaneously with the beginning of the Villafranchian (C h a l i n e, 1977) (Plate I).

Zone NSM_{12} — Ebersininaia milcovensis-Rugunio riphaei (A n d r ee s c u, 1978) is defined by the occurrence of the two marker species : the former prevails in the lower part and the latter—in the upper part. The successions of molluscan assemblages allowed the separation of four subzones (A n d r e e s c u, 1978, 1979) within the zone NSM_{12} (Table 1) :

NSM_{12a} – Ebersininaia milcovensis-Viviparus turritus

 NSM_{12b} – Ebersininaia geometrica-Bogatschevia pretamanensis

NSM_{12c} – Unio kujalnicensis

NSM₁₂₀ – Rugunio riphaei-Bogatschevia tamanensis

Subzone NSM_{12a} has its equivalent in the Cistopol, Simbughinohorizons (=Anodonta rustavellii Zone) of the Lower Akchagylian (Upper part)— Middle Akchagylian (lower part) (Nikiforova et al., 1976; I a himovici et al., 1977; Andreescu, 1979).

To a large extent (?probably entirely) subzone $NSM_{12^{\rm b}}$ correlates with E. geometrica Zone (= Sultanaevo Complex) of the Middle Akchagylian (= Akkuleaevo Horizon) in the Euxino-Caspian Realm (N i k if o r o v a et al., 1976). At present it is difficult to correlate subzone NSM_{125} with a certain zone of the "Paludina Beds" in the Pannonian Basin. However, a comparison with the terminal part of the Viviparus hoernesi Zone and the lower part of the V. zelebori Zone is not out of question.

Subzone NSM_{12c} (T c h e p a l y g a , 1972) is defined by the interval during which the faunal assemblages become poorer as compared to the former subzone, pointing out the covering of a period with a cold climate. The assemblage is dominated by boreal unionids (*Unio kujalnicensis* M a n g., *Unio* sp.), smooth vivipars (*Viviparus subconcinnus*, *V. fasciatus*), as well as small gastropoda of the genera Fagotia, Lithoglyphus, Melanopsis, Theodoxus, etc.

The abundance of specimens of U. kujalnicensis, beside the occurrence of species *Dolomys milleri* (= Slatina₁ level, F e r u et al., 1978) made it possible to equate subzone NSM_{12e} to U. kujalnicensis Zone (= Krijanovka Complex, upper part=Liventzovka Lower Horizon = = lower part of the Haprovian Complex) of the Kujalnik at Odessa (= Upper Akchagylian) (N i k i f o r o v a et al., 1976; F e r u et al. 1979; A n d r e e s c u et al., 1981).

Subzone NSM_{12d} corresponds to the occurrence interval of the index species, limited at the upper part by the faunal assemblage of zone QM_1 .

156

PLIO-PLEISTOCENE BIOCHRONOLOGY AND CHRONOSTRATIGRAPHY

5

The interval corresponding to zone NSM_{12} overlaps the interval including the species *Archidiskodon gromovi*, mostly corresponding to the Haprovian Complex in the south of the USSR (=Upper Akchagylian) and Middle Villafranchian in Central and South-West Europe (Beremend₅, St. Vallier, Le Coupet, etc.) (= zone MN_{17} part., Mimomys pliocaenicus) (M e i n, 1975, 1979; F e r u et al., 1978, 1979) (Plate I).

Zone QM_1 — Unio apscheronicus (T c h e p a l y g a, in N i k i f o r o v a et al., 1976) is defined by the occurrence interval of the index species limited at the upper part by the occurrence of the species Bogatschevia sturi.

The faunal assemblage, dominated by reofile (Unio pictorum type) and stagnofile (Euphrata type) boreal unionids, indicates a severe cooling of the climate, possibly corresponding to the Donau glaciation. The molluscan assemblage allows the correlation of zone QM₁ with the Domashkino Complex (Lower Apsheronian) as well as with the mammal Odessan Complex, lately considered in the base of the Pleistocene (N i k i forova et al., 1976).

Zone QM_2 — Bogatschevia sturi (T c h e p a l y g a, 1972) corresponds to the occurrence interval of the index species which, in the Dacic Basin, in the Euxino-Caspian Realm and in the Pannonian Basin seems to have a limited range (about 1.57 - 1.3 m.y.). Meanwhile, in the Dacic Basin, the upper limit of the zone has not been established yet.

Magnetostratigraphy

At the stratotype of the Dacian and Romanian stages, on the Slănicu de Buzău Valley, village of Beceni, Buzău District, the boundary between the two mentioned stages coincides with the limit between zone NSM_9 and NSM_{10} ; it is situated at the level of normal polarity Cochiti event (3.7 - 3.8 m.y.) of the Gilbert paleomagnetic epoch (A n d r e e s c u, 1979; G h e n e a, et al., 1982) (Plates I, II).

In the section on Slănicu de Buzău Valley, the boundary between zones NSM_{10} and NSM_{11} coincides with the Gilbert-Gauss limit (3.32 m.y.) (Tables 1, 2). At Podari (Jiu Valley) subzones NSM_{11a} and NSM_{11b} are situated in the lower part of the Gauss epoch (Plate II). For both subzones a time span of cca 0.3 m.y. can be estimated.

In the type section of the Romanian the base of subzone NSM_{11d} coincides with the Kaena event of the Gauss epoch (cca 2.8 - 2.9 m.y.). (Plate II). (A n d r e e s c u , 1979; G h e n e a et al., 1982). By extrapolation it may be inferred that subzone NSM_{11c} might approximately correspond to the Mammoth event and to the normal polarity interval prior to the Kaena event (cca 0.15 - 0.18 m.y. from the Gauss epoch).

In the Slatina and Milcovu din Vale (Olt Valley) sections subzone NSM_{12a} is located in an interval of normal polarity which, by correlation with the Simbughino Complex (I a h i m o v i c i et al., 1977), might correspond to the upper part of the Gauss epoch; therefore, the beginning of zone NSM_{12} may be estimated at about 2.6 – 2.7 m.y. (A n d r e e s c u et al., 1981) (Plates I, II). Subzones NSM_{12b-d} are found in the lower

157

👆 Institutul Geologic al României

I. ANDREESCU

part of the Matuyama epoch of reversed polarity. It is possible that the Reunion events (normal polarity), which have not been pointed out in the Slatina section, might correspond to a sedimentary gap in the base of subzone NSM_{12d} (Table 2). Subzone NSM_{12d} , by analogy with its equivalent in the Upper Akchagylian (N i k i f or o v a et al., 1976), begins at about 2.0 m.y., and zone QM_1 in the base of the Apsheronian corresponds to the Olduvai event (cca 1.8 - 1.6 m.y.) of the Matuyama epoch (A n - d r e e s c n et al., 1981) (Plate II).

Chronostratigraphy

The Romanian has been previously (A n d r e e s c u, 1972) subdivided into two parts: the Lower Romanian – corresponding to the "beds with smooth unionids" – and the Upper Romanian – including the "beds with sculptured unionids".

Considering the evolution of different groups of organisms (mollusca, mammals, etc.) on the one hand, and the evolution of the sedimentary basin, on the other hand, we have subdivided subsequently the Romanian into three substages (Andreescu, 1979, 1981; Andreescu, et al., 1981) (Plate I).

The Lower Romanian maintains the same sense as defined in 1972, corresponding now to zone NSM_{10} . As the classic area of formations development and of fauna occurrence, on the basis of which the substage has been delimited, is found at the Romanian stratotype, we have proposed (Andreescu, 1979) the name of Siensian (from the Daco-Getic tribes of the Siens, who lived in the East Carpathians Bend Zone) for the Lower Romanian.

Taking into account the mammal faunas of Berești, Mălușteni, Kuchurgan, etc. there results that the Siensian substage corresponds to the lower part of the Moldavian Complex (zone MN_{15} ; M e i n, 1975, 1979), belonging to the Upper Ruscinian (= "Proto-Villafranchian" auct.) (Plate I).

The Middle Romanian is defined by the interval of maximum proliferation of the "Levantine fauna" of sculptured unionids and ornamented viviparids, within which the occurrence of zone NSM_{11} is pointed out.

The most representative deposits yielding the unionid fauna of zone NSM_{11} , are to be found in the west of the Dacic Basin, the Jiu hydrographic basin, at Bucovăț, Podari, Crețești, Bîlta, etc., in the outskirts of Craiova. Consequently, we have proposed the name of Pelendavian (from the Dacic town Pelendava situated in this region) for the Middle Romanian substage (A n d r e e s c u, 1979).

In the Euxino-Caspian Realm, the Middle Romanian roughly coresponds to the Poration (Lower Akchagylian) and in the South-West European Realm it is mostly equivalent to the Lower Villafranchian (Plate I).

The Upper Romanian (for which the name Wallachian was proposed in 1979) is characterized by faunal assemblages clearly differentiated from those of the Middle Romanian. We may say that, at this level, the fresh-water molluscan faunas point to significant Euxino-Caspian affinities, unlike those of the Middle and Lower Romanian

158

7

which are found mostly in the Pannonian Basin. From the climate point of view, the Wallachian is characterized by important oscillations, when the cold intervals alternate with the warmer ones (Plate I).

We have mentioned that the lower boundary of the Romanian is situated at cca 3.7-3.8 m.y. and the upper boundary, corresponding to the limit between zones NSM_{12} and QM_1 (Pliocene/Pieistocene boundary in the present acceptance), coincides with the Olduvai event (1.6 - 1.8m.y.). Consequently the Romanian spans an interval of cca 20. m.y., out of which cca 0.5 m.y. belong to the Siensian, 0.7 m.y. to the Pelendavian, and 0.8 m.y. to the Wallachian.

REFERENCES

- Andreescu I. (1972) Contribuții la stratigrafia Dacianului și Romanianului din zona de curbură a Carpaților Orientali. D. S. Inst. geol., LVIII/4, București.
 - (1981) Middle-Upper Neogene and Early Quaternary Chronostratigraphy from the Dacian Basin and Correlations with the Neighbouring Areas. VII-th Int. Cong. Medit. Neog., Alhens (1979, vol. 4, Athens).
 - Rădulescu C., Samson P., Tschepalyga A., Troubikhin V. (1981) Chronologie (Mollusques, Mammifères, Paléomagnétisme) des formations pliopléistocénes de la zone de Slatina (Bassin Dacique), Roumanie. T:uv. Inst. Spéol. "E. Racovilza", t. XX, Bucarest.
- Cepalyga A. L. (1972) Neogene-Quaternary Boundary on Base of Freshwater Molluses Fauna. Int. Coll. Neog. - Quat. Bound., Collect of papers, vol. 111, p. 159 - 164, Moscow.
- Chaline J. (1977) Les événements remarquables de l'histoire Plio-Pléistocène des faunes des campagnols (Arvicolidae Rodentia) dans l'hémisphère nord. Neog. – Quat. Bound. Proc. II Symp., Bologna (1975), Giorn. di Geol. (2), fasc. 1 – 11, p. 123 – 129, Bologna.
- Feru M., Rådulescu C., Samson P. (1979) Biostratigraphie (Micromammiteres) des dépôts plio-pléistocènes du domaine gétique de la Dépression valaque, Trav. Inst. Spéci. "E. Racovilza", t. XVIII, p. 141 – 169, Bucarest.
- Ghenea C., Andreescu I., Bandrabur T., Mihăilă N., Tshepalyga A, Trubihin V. (1982) Bio and Magnetostratigraphic correlations on the Pliocene and Lower Pleistocene formations of the Dacic Basin and Braşov Depression (Romania). D. S. Inst. gcol., LXV/2, București.
- Mein P. (1975) Biozonation du Néogène méditerranéen à partir des Mammifères. Résultats du Groupe de Travail des Vertébrés. Rep. RCMNS Sork. Groups, p. 78 – 81, Bratislava.
- Nikiforova K. V., Krasnov I. I., Alexandrova L. P., Vasilicv I. M., Konstantinova N. A., Cepalyga A. L. (1976) Klimaticeskie kolebaniai. detalnaia stratigrafia verhnepliotenovih-nijnepleistotenovih otlojenii iuga SSSR. 1zd. "Nauka", Moskva.
- S a m s o n P. (1976) Les Equides fossiles de Roumanie (Pliocêne moyen-Pléistocène). Geol-Romana, XIV, p. 165 – 352.
 - Rădulescu C. (1973) Les faunes de Mammifères et la limite Pliocène-Pléistocène en Roumanie. Trav. Inst. Spéol. "E. Racovilza", t. 12, Bucarest.

T WUDUFFOCO	I.	ANDREESCU
-------------	----	-----------

T o b i e n H. (1970) Biostratigraphy of the Mammalian faunas at the Pliocene-Pleistocene boundary in Middle and Western Europe. Paleogeogr. Paleoclim. Paleoccol., no 8, p. 77 - 93, Elsevier, Amsterdam.

QUESTIONS

 $K\,r\,s\,t\,i\,c$. Where from did you take the paleomagnetic samples - from outcrops or from boreholes ?

Answer, All the samples were taken from outcrops.

8

STRATIGRAPHIC SCHEME OF THE UPPER PLIOCENE AND LOWER PLEISTOCENE OF THE DACIC BASIN

I. ANDREESCU. Upper Pliocene - Lower Pleistacene Biochronology and Chronostratigraphy.

cı	HRONOSTRATIGRAF UNITS	Million years	E	PALE TIME POCHS	Polarity S W	AGNETIC CALE EVENTS	KEY MOLLUSCA DATUM PLANES (RELATED TO THE)- PALEOMAGNETIC DATA)	MOLLUSCA ZONES (ANDREESCU, 1978, 1979)	MAMMAL ZONES (MEIN 1979)	MAMM FAUN	AL AS		EUXIND-CASPIAN STAGES	L.	EUF AND ST	ROPE MA AGE	AN MML S	MEDITERRANEAN STAGES	CLIMA (BAS MC ASSA Warm	TIC CURVE GED ON DLLUSC MBLAGES) cold
OCENE	OLOCENE UPPER MIDDLE	-0,29 -0,50 -0,75		BRUNHES	のないなどの	Jaramillo						IN	Upper	TAMANIAN	NVIGUNIA	DIFARIAN				
PLEIST	LOWER	- 1,25 -1,50 		MATUYAMA		Olduvai	J Unio apscheronicus	QM ₂ Bogatschevia sturi QM ₁ Unio apscheronicus		Archidiskoton maridionalis	Alophaiomys pliocaenicus	APSHERONIA	z Lower ກ ບ	DECCAN	ANYAN	N	Upper	CALABRIAN_) Donau
E N E	Z ≪ WALLACHIAN -	- 2,0 -2,25 -2,50	-			>Reunion	 Rugunio riphaei Bogatschevia tamanensis Unio kuyalnicensis Ebersininaia geometrica Ebersininaia milcovensis Cuneopsidea iconomianus Rytia bielzi Pristinunio pristinus Rugunio lenticularis 	12d — R.riphaei NS M ₁₂ E.milcovensis R.riphaei 12b — E.geometrica 12a — E.milcovensis	MN ₁₇ 16 b MN ₁₆ 16 a	Archidiskodon gromowi	Mimomys pliocaenicus	LIAN	Upper Middle	N 1 VIA ADDOVIAN		RANCHIA	Middle	?		Bibor
U P P	Z PELENDAVIA Z	-2,75 N - 3,0 -3,25		GAUSS		Kaena Mammoth		s NSM ₁₁ R.lenticularis 11d — C.iconomianus 11c — R.bielzi 11b — R.pristinus 11a — R. brandzae		V Archidiskodon rumanus	ys Mimomys us polonicus	AKCHAGYI	Lower 20	SKORTZELSKIA	OLDAVIAN	VILLAF	Lower	PIACENZIAN		
- P L	SIENSIA PARSCOVIA	-3,50 -3,75 1 - 4,0		GILBERT		Cochiti Nunivac	J Psilunio sibinensis Jazkoa sturdzae Pachyprionopleura euphrosinae	NS M ₁₀ 10b — P. sibinensis V. bitarcinatus 10a — J. sturdzae NS Mg Pachyprionopleura haueri- neumayri	MN ₁₅ MN _{14 4}	Zygolophoeton borson Anencus ervernensis	Promimom molda vicu	+KIMMERIAN'-	PANTICAPEAN KAMYSHOURUN.	- DIISCINIAN	A CABNOT	- IONNALL	+ PUSCINIAN	Z A N C L I A N	/	

ANUARUL INSTITUTULUI DE GEOLOGIE ȘI GEOFIZICĂ. VOL LIX.

Imprim Atel Inst Geol Geol.

PI. I.

SUCCESSION DES MAMMIFÈRES PLIO-PLÉISTOCÈNES DANS LE BASSIN DACIQUE (ROUMANIE)¹

PAR

MIRCEA ULPIU FERU², CONSTANTIN RĂDULESCU³, PETRE SAMSON³

Les recherches que les auteurs ont entreprises sur les formations fluvio-lacustres du Bassin Dacique depuis 1958, basées autant sur des nids fossilifères fouillés systématiquement que sur des pièces éparses dont la position stratigraphique a été repérée, permettent de fixer quelques moments importants dans le développement des principaux ensembles de Mammifères plio-pléistocènes en Roumanie.

Des associations de gros Mammifères ont été signalées dans la moyenne vallée de l'Oltet, à Tetoiu (= Bugiulești) et à Irimești (N e c r a s o v et al., 1961; S a m s o n, E ă d u l e s c u, 1973), ainsi que dans la zone Craiova-Filiași (S c h o v e r t et al., 1963) et dans l'interfluve Jiu-Motru (Feru et al., 1965). La connaissance des Micromammifères est plus récente, des associations de Rongeurs et d'Insectivores étant mises en évidence premièrement à Slatina, Cherleștii-Moșteni et Izvoru (F e r u et al., 1978), ensuite à Podari, Milcovu din Vale et Drăgănești-Olt (F e r u et al., 1979). Ajoutons qu'à Slatina, Milcovu din Vale et Izvoru, les recherches concernant les Mollusques associés aux Mammifères, ainsi que les datations paléomagnétiques ont apporté des précisions complémentaires (A n d r e e s c o et al., 1981).

D'une manière générale, nous avons choisi pour caractériser chaque association de Mammifères une localité type — la plus riche en espèces significatives — à laquelle nous avons réuni les découvertes équivalentes de la même zone (figure). Les principales corrélations que nous avons établies (tableau) se rapportent aux schémas de l'Union Soviétique (N i k i f o r o v a et al., 1976; T c h é p a l y g a, 1980) des Pays Bas (Z a g w i j n, 1974), de la France (H c in t z, 1970), de l'Italie (A mb r o s e t t i et al., 1972; A z z a r o l i, 1977) et du Néogène méditerranéen (M e i n, 1975).

11 - c. 50

¹ Note présentée au 12ème Congrès de l'Association Géologique Carpatho-Balkanique, 8 – 13 septembre 1981, Bucarest, Roumanic.

² Entreprise géologique de Prospections, Caransebeş 1, Bucarest.

³ Institut de Spéologie "Emile Racovitza", Bucarest.

M. U. FERU et al.

Institutul Geologic al României

Faune de Covrigi (partie inférieure de l'horizon sablo-graveleux situé entre les couches XII et XV de charbon): Anancus arvernensis, Dicerorhinus cf. jeanvireti, D. cf. etruscus, Metacervocerus pardinensis.

Autres gisements — Faune de Groșerea (même horizon) : Zygolophodon borsoni, Anancus arvernensis, Dicerorhinus cf. jeanvireti, Equus cf. simionescui, Metacervocerus pardinensis, Cervus cf. perrieri.

Equivalents (Depression de Brașov) — Faune de Iarăș-2: Dicerorhinus cf. jeanvireti, D. cf. etruscus, Cervus sp. (taille grande). — Faune de Ilicni : Anancus arvernensis, Tapirus arvernensis, Dicerorhinus cf. jeanvireti, Cervus sp. (taille petite), Gazella sp., Ursus minimus, Hystrix cf. refossa, Castor sp.

Paléomagnétisme : normal à Iarăș-2, époque de Gauss avant l'événement de Kaena (Ghenea et al., 1981).

Caractéristiques de la faune : association de deux Mastodontes ; Eléphant absent ; deux formes du genre *Dicerorhinus* de taille différente ; Cervidés archaïques ; Equidé monodactyle primitif.

Corrélations : sommet de l'horizon kagoulien du complexe faunique moldave, partie supérieure de la zone des Etouaires (~ 3 MA), Triversa, zone MN 16.

Faune de Cernătești (partie moyenne de l'horizon sablo-graveleux identifie à l'horizon moyen du "Levantin") : Zygolophodon borsoni, Anancus arvernensis, "Archidiskodon" rumanus, Dicerorhinus cf. jeanvireti, D. cf. etruscus, Metacervocerus pardinensis.

Autres gisements — Faune de Podari (partie sommitale de l'horizon moyen, sablo-graveleux du "Levantin"): Desmana kormosi, Trogontherium sp. (taille petite), Pliomys hungaricus, Dolomys milleri (archaique).

Paléomagnétisme : normal, époque de Gauss (détermination par V. M. Troubikhine, communiquée par A. L. Tchépalyga).

Equivalents (Moldavie du sud) – Faune de Tulucești : Z. borsoni, A. arvernensis, "Archidiskodon" rumanus, Allohippus major euxinicus, Paracamelus alutensis, Cervus cf. perrieri.

Caractéristiques de la faune : apparition d'un Eléphant très primitif ("A". rumanus); Chevaux sténoniens de très forte taille; Dolomys du groupe milleri archaique.

Corrélations : complexe faunique skortselskien (= Poratien supérieur) (A l e x e e v a, 1977), Montopoli ou l'Eléphant, assimilé à A. gromovi, représente une forme plus primitive.

Les faunes de type Covrigi et Cernătești se rangent dans le Romanien moyen.

Faune de Slatina-1 (couche 14, argilo-limoneuse) : Desmana kormosi, Apodemus sp., Dolomys milleri ssp., Mimomys minor.

Paléomagnétisme : inverse, début de l'époque de Matuyama.

Caractéristiques de la faune : dominance de Dolomys dont le degré d'évolution est nettement plus avancé qu'à Podari.

Corrélations : horizon kryjanovkien du complexe faunique khaprovien, partie moyenne du Prétiglien, moitié inférieure de la zone de St. Vallier et de la zone MN 17. Faune de Milcovu-l (coupe de Milcovu din Vale, couche 3, sablolimoneuse) : Trogontherium sp. (taille petite), Dolomys milleri ssp., Mimomys cf. minor. Bien que les raccords stratigraphiques placent le niveau de Milcovu-l au-dessous de celui de Slatina-l, nous n'avons pas séparé les deux faunes, étant donné leurs étroites affinités ; les Mollusques associés, caractéristiques de l'horizon tchistopolien situent le niveau de Milcovu-l antérieurement à l'horizon kryjanovkien.

Faune de Slatina-2 (couche 17, sablo-graveleuse, ravinante): Desmana nehringi, Talpa fossilis, Beremendia fissidens, Léporidé cf. Hypolagus brachygnathus, Apodemus sp., Dolomys milleri milleri, Mimomys minor, Eucladoceros sp. et tres probablement Archidiskodon gromovi.

Paléomagnétisme : inverse, époque de Matuyama.

Autres gisements — Faune de Cherleștii-Moșteni (couche 3, argileuse): Desmana nehringi, Trogontherium sp. (taille petite), Allactaga ucrainica, Apodemus sp., Dolomys milleri milleri, Borsodia sp., Mimomys gr. polonicus-pliocaenicus, M. minor. La position stratigraphique et la faune situent le gisement de Cherleștii-Moșteni immédiatement au-dessus de celui de Slatina-2. — Faune de Frătești-l (zone de Frătești-Giurgiu, horizon inferieur, sablo-graveleux): l'association de Mammifères, connue des la fin du siècle dernier, renferme à côté de Anancus, un Eléphant proche, peut-être, de A. gromovi; ainsi, la faune se rangerait près de celle de Slatina-2.

Caracteristiques de la faune : diminution sensible de Dolomys qui est plus évolue que dans le niveau de Slatina-1; dominance du groupe Mimomys; présence de Desmana nehringi; apparition, à Cherleşti, de la lignée M. polonicus-pliocaenicus, de Borsodia et de Allactaya indiquant le début d'une première détérioration climatique (continentalisation) enregistrée par les Mammifères.

Corrélations : horizon ferladanien du complexe faunique khaprovien, phase fraîche du Tiglien, deuxième moitié de la zone de St. Vallier (antérieurement à St. Georges-d'Aurac, daté de 1,92 MA) et de la zone MN 17.

Les faunes comprises entre le niveau de Milcovu-l et celui de Cherlești se situent dans le Romanien superieur.

Faune de Slatina-3 (couche 37, sablo-limoneuse): Trogontherium boisvilletti dacicum, Mimomys sp.

Paléomagnétisme : normal, evénement d'Olduvai (couches 37-40).

Autres gisements — Faune de Tetoiu-l (vers la base de l'horizon inférieur à dominante sablo-limoneuse) : Archidiskodon meridionalis, Dicerorhinus etruscus, Allohippus athanasiui, Eucladoceros sp., Mitilanotherium inexspectatum, Pliotragus ardeus, Nyctereutes megamastoides, Ursus etruscus, Homotherium crenatidens, Megantereon megantereon, Lynx issiodorensis, Beremendia cf. fissidens, Hystrix refossa, Castor plicidens, Trogontherium boisvilletti dacicum, Hypolagus brachygnathus, Paradolichopithecus geticus.

Caractéristiques de la faune : Archidiskodon meridionalis, seul ; chevaux stenoniens de grande taille ; Cervides de type Eucladoceros ; présence de Trogontherium de taille moyenne, du Girafidé Mitilanotherium et du Primate Paradolichopithecus geticus.

MAMMIFÈRES PLIO-PLÉISTOCÈNES DANS LE BASSIN DACIQUE

Corrélations : début de l'horizon domachkinien du complexe faunique odessan, fin du Tiglien, début de la zone de Senèze (antérieurement au gisement type).

Limite Pliocène/Pléistocène — Des données convergentes, concernant les Mammifères, les Mollusques et le paléomagnétisme, indiquent, dans le profil de Slatina, la situation de la limite plio-pléistocène au niveau de Slatina -3 (Andreescu et al., 1981; Feru et al., 1978). La même limite a été tracée par Samson et Rădulescu (1973) à la base de Tetoiu-l, ce qui vient d'être renforcé par les résultats obtenus à Slatina.

Faune de Tetoiu-2/Irimești (vers le milieu de l'horizon moyen à dominante sablo-graveleuse); Archidiskodon meridionalis, Dicerorhinus etruscus, Allohippus stenonis mitilanensis, Allohippus gr. major, Sus strozzi, Mitilanotherium inexspectatum, Eucladoceros sp., Allocaenelaphus sp., Cervus nesti, Praealces gallicus, Megalovis latifrons, Leptobos sp., Canis etruscus, Pachycrocuta brevirostris, Castor plicidens, Trogontherium boisvilletti boisvilletti.

Autres gisements — Faune de Milcovu-2 (coupe de Milcovu din Vale/Olt, couches 26-29, sablo-graveleuses) : A. meridionalis, Paracamelus alutensis. — Faune de Izvoru-l (couche 1, sablo-graveleuse) : A. meridionalis, Allocaenelaphus sp. — Faune de Frätești-2 (Prundu, horizon moyen sablo-graveleux): A.meridionalis, Praealces gallicus. — Faune de Drăgănești—Olt (couche 2, sablo-graveleuse) : Desmana gr. nehringi, Trogontherium sp., Allactaga sp., Parapodemus sp., Mimomys pliocaenicus, M. cf. coelodus, M. reidi, M. newtoni, Clethrionomys kretzoii, Borsodia cf. lagurodontoides. Il est difficile de préciser la position chronologique de la faune de Drăgănești par rapport aux niveaux de Tetoiu-l et de Tetoiu-2; tres probablement, elle est plus proche du second.

Caractéristiques de la faune : association de deux Equidés sténoniens, de taille différente ; apparition de Trogontherium de taille grande, de Praealces, de Megalovis et des Mégacérins primitifs du groupe Allocaenelaphus ; ces dernières espèces ainsi que Paracamelus, Allactaga, Borsodia, Clethrionomys kretzoii, Mimomys newtoni et la fréquence accrue de M. pliocaenicus indiquent une détérioration climatique.

Corrélations : partie superieure de l'horizon domachkinien du complexe faunique odessan, début de l'Eburonien, zone de Seneze (la localité type), Tasso et Casa Frata.

Faune de Izvoru-2 (couche 9, limono-sableuse) : Desmana nehringi, Petenyia hungarica, Beremendia fissidens, Leporide cf. Hypolagus brachygnathus, Citellus primigenius, Trogontherium boisvilletti boisvilletti, Borsodia cf. hungarica, Mimomys gr. reidi-pusillus, M. coelodus, M. pitymyoides, Kislangia rex.

Caractéristiques de la faune : Insectivores plus nombreux ; présence de Citellus, M. pitymyoides et Kislangia ; l'ensemble suggère une amélioration du climat.

Corrélations : début de l'horizon bochernitsien du complexe faunique odessan, phase plus chaude de l'Eburonien (antérieurement à Brielle), sommet de la zone de Senèze.

165

– Institutul Geologic al României

6

Faune de Tetoiu-3 (horizon supérieur à dominante graveleuse): Archidiskodon meridionalis ssp. (évolué), "Allohippus" cf. suessenbornensis, "A". cf. marxi, Equus aluticus, Soergelia cf. elisabethae, Bison cf. schoetensacki, Trogontherium boisvilletti boisvilletti.

Equivalents (Depression de Brașov) — Faune de Rotbav-Silvestru (horizon sablo-graveleux inferieur) : A. meridionalis, Dicerorhinus etruscus, "Allohippus" cf. suessenbornensis, "A" cf. marxi, "A". cf. altidens, Equus aluticus, Allocaenelaphus arambourgi.

Caractéristiques de la faune : présence de formes évoluées du groupe "Allohippus", de E. aluticus et de A. arambourgi; l'association indique une détérioration climatique.

Corrélations : horizon kaïrien du complexe faunique tamanien, épisode plus frais du Waalien (B).

Les faunes de Tetoiu-l (Slatina-3) à Tetoiu-3 représentent trois phases successives dans le Pléistocene inférieur.

Faune de Frătești-3 (Frătești s.s.) (horizon superieur sablo-graveleux): Archidiskodon meridionalis (évolue), Praemegaceros verticornis.

Caractéristiques de la faune : présence de P. verticornis ; forme évoluée de A. meridionalis.

Corrélations : horizon mikhaïlovkien du complexe faunique tiraspolien, début du "Complexe Cromérien".

La faune de Frătești-3 s'inscrit dans la partie inferieure du Pleistocene moyen.

En guise de conclusion, nous devons relever que deux notions, celles de "couches de Cîndești" et "couches de Frătești", sans être formulées explicitement, sont restées sous-entendues à notre exposé. L'espace ne nous permet pas d'entrer dans les détails de ce problème ; d'ailleurs nous les avons discutés récemment (Feru et al., 1979). Rappelons, toutefois, que les faunes se situant entre les niveaux de Covrigi et de Cherlestii-Moșteni ou même de Milcovu-2 proviendraient des sédiments attribués généralement aux "couches de Cindeşti" et que les associations comprises entre les horizons de Tetoiu-1 et de Frätesti-3 appartiendraient plutot aux "couches de Frătești". Mais, il est évident, qu'à partir au moins du Romanien moyen, des niveaux chronologiquement equivalents se trouvent aussi bien dans l'une que dans l'autre des deux formations; ainsi. "couches de Cîndești" et "couches de Frătești" ne representeraient quand elles auront une définition lithologique adéquate — que tout au plus deux faciès différents d'un même processus de remblaiement du Bassin Dacique. Et, à la fin, mentionnons que des découvertes récentes, faites près du Danube, à Ciuperceni (Terzea, Boroneanț, 1979) – donc dans le domaine des "couches de Frătești" - laissent entrevoir un niveau plus ancien encore, proche de celui de Mălusteni-Beresti, ce qui vient de renforcer nos vues antérieures.

RÉFÉRENCES BIBLIOGRAPHIQUES

- Alexeeva L. I. (1977) On the new theriocomplex in the Northern Black Scalittoral zone Bull. Acad. Sc. Georgian SSR, 86, 2, Tbilissi.
- Ambrosetti P., Azzaroli A., Bonadonna F. P., Folieri M. (1972) A scheme of Pleistocene chronology for the Tyrrhenian side of Central Italy. Boll. Soc. Geol. It., 91, Roma.
- Andreesco I., Radulesco C., Samson P., Tchépalyga A. L., Troubikhine V. M. (1981) Chronologie (Mollusques, Mammiferes, Paléomagnétisme) des formations plio-pléistocenes de la zone de Slatina (Bassin Dacique), Roumanie. Trav. Inst. Spéol. "Emile Racovitza", 20, Bucarest.
- Azzaroli A. (1977) The Villafranchian Stage in Italy and the Plio-Pleistreene Boundary. Giornale di Geol. (2) 41, 1 - 2, Bologna.
- Feru M., Rădulesco C., Samson P. (1965) Contribuții la cunoașterea faunei de mamifere villafranchiene din vestul Depresiunii Getice (interfluviul Jiu-Motru). Lucr. Inst. Speol. "Emil Racoviță", 4, București.
 - (1978) Biostratigraphie (Micromammifères) des dépôts plio-pléistocènes de la zone de Slatina (dép. d'Olt.). Trav. Inst. Spéol. "Emile Racovitza", 17, Bucarest.
 - (1979) Biostratigraphie (Micromammifères) des dépôts plio-pléistocènes du domaine gétique de la Dépression valaque. Ibid, 18, Bucarest.
- Ghenea C., Bandrabur T., Mihăilă N., Rădulescu C., Samson P., Rădan S. (1981) Pliocene and Pleistocene deposits in the Braşov Depression. INQUA, SEQS, Guidebook for the Field excursion, 1 - 8 june 1981, Bucharest.
- Heintz E. (1970) Les Cervidés villafranchiens de France et d'Espagne, I. Mém. Mus. Nation. Hist. Nat. (C) 22, Paris.
- Mein P. (1975) Biozonation du Néogène méditerranden à partir des Mammifères. Rep. activity R.C.M.N.S. work. gr., Bratislava.
- Necrasov O., Samson P., Rădulesco C. (1961) Sur un nouveau singe catarhinien fossile découvert dans un nid fossilifère d'Olténie (R.P.R.). Ann. St. Univ. "Al. I. Cuza" Iaş (2) 7, 2, Iaşi.
- Nikiforova K. V., Krasnov I. I., Alexandrova L. P., Vassiliev I. M., Konstantinova N. A., Tchépalyga A. L. (1976) Oscillations climatiques et stratigraphie détaillée des dépôts du Pliocène supérieur-Pléistocène inférieur du sud de l'URSS (en russe). Izd. "Nauka", Moskva.
- Samson P., Rădulesco C. (1973) Les faunes de Mammifères et la limite Pliocène-Pléistocène en Roumanie. Trav. Inst. Spéol. "Emile Racovilza", 12, Bucarest.
- Schovert E., Feru M., Serbanesco V., Sbenghe R., Croitoru M., Croitoru E. (1963) Cercetări geologice în zona centrală din vestul Cimpiei getice. Com. Geol. Stud. tehn. econ. (E) 6, București.
- T c h é p a l y g a A. L. (1980) Paléogéographie et paléoécologie des basins des Mers Noire et Caspienne (région ponto-caspienne) au Plio-Pléistocène (en russe). Res. Thèse Doctorat Sc. Géogr., Moskva.
- Terzea E., Boroneant, V. (1979) Découverte d'une faune de Mammifères pliocènes à Ciuperceni (dép. de Teleorman). Remarques sur deux espèces inconnues en Roumanie. Trav. Inst. Spéol. "Emile Racovitza", 18, Bucarest.
- Zagwijn W. H. (1974) Les problèmes de la subdivision du Pléistocène moyen des Pays Bas. Bull. de l'AFEQ, 40 - 41, 3 - 4, Paris.

Institutul Geologic al României

ANUARUL INSTITUTULUI DE GEOLOGIE ȘI GEOFIZICĂ. VOL. LIX.

U.R.	S. S.	NS		PAYS - BAS		FRAN	
GISEMENTS	HORIZONS CLIMATIQUES	AGES MAMMALIE		ETAGES		GISEMEN À MAMMIFÈI	
	PLATOVIEN	AS- IEN		"CROME-			
	MIKHAÏLOVKIEN	TIR		RIEN" I			
orozovka	MOROZOVKIEN	Z		MENAPIEN			
ogaïsk	NOGAÏSKIEN	AMANIE	1	A ALIEN B O			
hobroutchi	KAIRIEN		1	À A	LES	Pourollos	
ryjanovka(sup)	BOCHERNITSIEN	SSAN		Brielle NEINOND	E ROL	reyrolles	
aratovskaïa(2)	DOMACHKINIEN	ODE			SENÈZ	Senèze	
iventsovka (4) Iovaïa Etulia	FERLADANIEN	APRO-		- C3	~	▲ Coupe ▲ St.Geo d'Aur St Vall	
iventsovka (5) (ryjanovka (inf.)	KRYJANOVKIEN	TX/	1	- A	LIE	51.440	
	AKKOULAEVIEN		''		T VAL		
	TCHISTOPOLIEN	SKIEN	~	PRAETI- GLIEN	 SAIN	▲Roca N	
		TSEL		REUVE - RIEN			
	PORATIEN	SKOR		11EN	?		
olinskoïe		1		SUN		▲ Etouai	
	KAGOULIEN	MOLDA-		BRUNS	AIRES		

REPRESENTATIVES OF THE GENUS BORELIS IN THE BADENIAN AND LOWER SARMATIAN OF YUGOSLAVIA

BY

NADEŽDA GAGIĆ²

The localities where genus *Borelis* occurs in the Badenian and Sarmatian of Yugoslavia, and of some neighbouring countries of the Central and Eastern Paratethys, are outlined in the present paper.

Representatives of the genus *Borelis*, generally and mostly the species *Borelis melo* (Ficht., Moll), are frequently encountered in the Badenian (auct. "Tortonian") of Yugoslavia, especially in Serbia where these sediments are quite widespread. They are contained in limestone, marl, marly clay and sand, subordinately in sand of oolitic habitus.

The "Tortonian" formations are referred to in this paper as the Badenian, based on the results and conclusions of the Working Group for the Paratethys of the Regional Committee on Mediterranean Neogene Stratigraphy, and Project No. 25 of the International Geological Correlation Programme.

Borelis melo and Borelis cf. haueri are found in western Serbia in the Korenite-Jadar Basin (Petrović, 1963/67; Gagić, 1965), in Lajtovac Limestone of Middle and Upper Badenian (loc. 1), in Koceljevo environs, in boreholes to a depth of some thirty metres; representatives of Borelis melo (Gagić, 1977; loc. 2) are encountered in marly clay in Ammonia beccarii zones of the Upper Badenian.

On the territory of Beograd, the species Borelis melo is found, according to S p a j i c and D z o d z o \cdot T o m i c (1973), in sandy clay of boreholes at Veliki Mokri Lug (91.4 m), Kumodraz (146 - 149 m, together with B. haueri), and Leštani (195 - 201 m), and in reef limestone with Lithothamnium below Kalemegdan, all in Bolivina dilatata Zone of the Upper Badenian, while the species Borelis haueri is identified in the same limestone of borehole B-19/74 (35 - 48 m) in the Railwaymen Hospital, Beograd (G a g i ć, 1974; loc. 3).

South of Beograd, representatives of *Borelis melo* are found in sandy clay of borehole B-1/73 (191 - 211 m; G a g i ć, 1973), north of the village of Venčane; based on microfossil community with large *Elphidium*

¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981 September 8 - 13, Bucharest, Romania.

² Geological Institute, Beograd, Yugoslavia.

N. GAGIĆ

 $\mathbf{2}$

and Cibicides (Heterolepa), these correspond to upper Badenian formations (loc. 4).

In the province of Vojvodina, *Borelis melo* is found in carbonate sediments (limestone and marly sandstone) and clay in the Upper Badenian, (Ammonia beccarii Zone) recorded in deep boreholes M a r k o v i c, 1956-1981; G a g i ć, 1959; Bo-18 at depth interval 1241 - 1247; loc.5).

Džodžo mentions (1964) Borelis melo from marly clay with Planulina wuellestorfi (S c h w.) near Golubac (loc. 6), eastern Serbia, from sandy clay of Bulimina-Bolivina Zone of the Upper Badenian near Štubik and Šarkamen (same author, 1959 and 1979; loc. 7), and from the Jagnjilski Potok (same author, 1963). This species is also encountered in clay belonging to lower lagenid zone, the zone known in the Lower Badenian Vienna Basin, in borehole B-25/63 (22 - 24 m) at Vrška Čuka (P o p o v i ć and G a g i ć, 1969; loc. 8); it is very abundant in highly marly clay of the upper lagenid zone in Bracevacka Reka (G a g i ć, 1971; loc. 9). It is encountered in argillaceous-arenaceous sediments of the Slatina Basin in the Ammonia beccarii Zone (G a g i ć, in P o p o v i ć, 1968; loc. 10).

The species Borelis melo is found in northern Bosnia (M u l d i n i-M a m u ž i ć, 1955) in marl from borehole Ravna Trešnja 1 (521 — 642m), north of Tuzla (loc. 11), corresponding to the upper lagenid zone of the type Badenian. Abundant Borelis melo is mentioned (M. E r e m i j a, 1970; loc. 12) in the Ammonia beccarii Zone in Upper Badenian marly sandstone of the Prnjavor Basin. Also in Bosnia, it is identified in sediments of northeastern slopes of Kozara, in sandy clays and clay-calcareous sandstones of the same zone (P e t r o v i ć, 1969).

Only individual specimens of *Borelis melo* have been found in Upper Badenian sediments of Croatia and Slovenia according to oral communication of Muldini-Mamuzić (1981) and Rijavec (1981).

This is a short survey of the localities where the genus *Borelis* was recorded in Yugoslavia (Fig. 1), in Middle Miocene (Badenian) sediments, not covering all data of the Geozavod Documentation Fund, but sufficient to illustrate the occurrence of the mentioned species, particularly on the territory of Serbia.

Studying Miocene marine microfossil associations I have come upon some new data concerning the range of the *Borelis melo*.

More than ten years ago I noted a frequent occurrence of Borelis melo in some sections near Beograd and in Pomoravlje in Lower Sarmatian (Volhynian) limestones, marly clay and sand, in Elphidium antoninum Zone, or its equivalent zone with small forms of Elphidium macellum and Elphidium crispum. It was a new knowledge of this species' vertical distribution in the Paratethys.

The frequent occurrence was not of individual specimens, though it also was possible, but of an abundance of individuals in a microfossil association, both adult and juvenile ones. It took time, however, for this species occurrence in Lower Sarmatian sediments to be accepted as a true range of *Borelis melo* and recognized, instead of being associated with resedimentation from Badenian sediments.

BADENIAN AND SARMATIAN BORELIS IN YUGOSLAVIA

Besides, a large number of specimens had to be found in the lowermost Lower Sarmatian, in Elphidium reginum Zone, what was also obtained in marly clay of borehole BM-1/74 (Zabrdje, 150 m; loc. 13) and limestone of Duboki Potok (east of loc. 13), in Pomoravlje. They were identified in limestones on the territory of Beograd (G a g i ć, 1974, boreholes; loc. 14).

Fig. 1. - Schematic map of Borelis melo and B. haueri representative localities on the territory of Yugoslavia.

1, Badenian, loc. 1 - 12; 2, Lower Sarmatian, loc. 13 - 18 (only B. melo).

These discoveries documented to a certain point the range of this species in Lower Sarmatian brackish sea of the Pannonian Basin in Yugoslavia, and called for a correlation with those in adjacent regions of the Paratethys, hence also the communication of the species within the Lower Sarmatian sea in general.

Borelis melo in upper Lower Sarmatian, in Elphidium antoninum Zone, on Beograd territory (loc. 15) is encountered in oolitic limestone at the depth interval roughly between 30 m (Svetozara Marcovića street; G a g i ć, 1980) and 60 m (Kronštatska Street; D ž o d ž o, 1975).

Near Beograd, Borelis melo was found in the same zone, in the pseudo-oolitic limestone of the Seona Stream (Gagić, 1972; loc. 16) (Fig. 2) in the sandy limestone of the village of Slatina (same author;

3

Fig. 2. - Borelis melo (Fichtel and Moll) from Seona Stream, loc. 16, Lower Sarmatian. a, wash-out specimens, magn. + 21; b, equatorial section with visible postseptal canals. Magn. ×-52; c, d, axial sections, test slightly damaged. Magn. × 52. Institutul Geologic al României

loc. 17) (Fig. 3), and in the most instructive section abunding with *Borelis* melo in banks and sides of the Mišljevac Stream, the village of Guberevac (G a g i ć, 1974; loc. 18) (Fig. 4).

Macrofaunal data and a general description of sediments in this section are given by S t e v a n o v i c, 1949.

Some small additions will be made in the list of microfossils from sediments in this stream in addition to the lithostratigraphic column (Plate). Microfossils encountered in bed 5 are Elphidium (d'Orb.), Elphidium crispum (Linné)— small forms, Elphidium sp., Ammonia beccarii (L.), Cytheridea hungarica Zal., Aurila mehesi (Zal.), Miocyprideis sarmatica (Zal.), Hemicyprideis cf. dacicus (H.), ; in bed 6 prevail ostracods; Cytheridea hungarica, Aurila mehesi, Hemicyprideis cf. dacicus, Xestoleberis cf. lunaris Rybina. Besides ostracods as in bed 6, occasional Xestoleberis is encountered in bed 7.

The Elphidium reginum Zone, i.e. basal Sarmatian, terminates with bed 12 which contains the last encountered representatives of Cytheridea hungarica. The first representatives of Aurila notata in bed 14 already belong to the lowermost upper zone of the Volhynian substage with Elphidium antoninum. Upward follows a set of beds, 14 through 24, which contain more or less Aurila notata; bed 15 includes minute miliolids, elphidiums, Halicoryne morelleti (Pok.); bed 16 has sparse Leptocythere plana (S c h n .), and bed 17 only Xestoleberis sp. Only rare Nonion and Elphidium are contained in bed 24.

The group of beds from 25 to 31 includes limestones, one of which (28) contains *Borelis melo* where it was first found in medium number.

Thus with beds 32 and 33 ends the accessible part of the section, on the left side of the Mišljevac Stream, and Sarmatian sediments continue from bed 34 to the right side of the stream but nearly only in calcareous facies. *Borelis melo* is more frequent in bed 35 and is abundant in bed 37.

The next member upward in the section is an oolitic limestone (bed 38) with algae and infrequent nubeculariids (adhesive forms), and a limestone with ostreae as the closing upper Lower Sarmatian bed.

The next 4.30 metres (bed 40) are lower Middle Sarmatian limestones with an abundance of peneroplids, and some olitic limestones.

Thus, following the lithological section, two quite big sets of strata could be separated.

The lower set of beds 1 - 12, which contain relatively abundant microfauna, represent the old littoral shallow-water region with clay-sand bottom.

A similar situation, with greater or smaller inflow of terrigenous constituents, and with higher or lower proportion of carbonate solution, when limestones (intercalations to thin beds) were formed, may have prevailed until the formation of compact limestones (bed 30).

Limestone occurrence is frequent from this bed to the end of the section (bed 40), with the exception of bed 34. It begins with compact limestones, to be succeeded by sandy, oolitic, vuggy, chalky limestones. Occasionally, they have a reef character of form back reef shoal series or fore reef shoals. The same could be inferred by the microfaunal associations.

Fig. 3. - Borelis melo (Fichtel, Moll) from sandy limestone of Slatina village, loc. 17, Lower Sarmatian.

a - c, axial and tangential sections; figs. 1 (×60) and 3 (× 52) details of fig. b (× 21); d, axial section, somewhat elongated form; Halicoryne morelleti (Pok.), besides borelis. Magn. × 52;
 c, axial and tangential sections; some forms slightly deformed. Magn. × 21.

Fig. 4. - Borelis melo (Fichtel, Moll) from Lower Sarmatian sediments of Mišljevac Stream, loc. 18.

a - c, axial sections of specimens from bed 35. The older and stronger individuals mechanically cover the younger ones preventing their growth, developing themselves. The phenomenon is possible among a multitude of specimens in a small area (fig. b) Magn. \times 52; d, axial section bed 28. Magn. \times 65.

– Institutul Geologic al României

8

Oolitic limestones contain in the nuclei some of terrigene components in addition to microfauna and algal fragments. They are formed along the coast line exposed to high waves, i.e. in the high-energy zone; the oolites are large-developed, in places deformed, when the salinity increased probably to as much as $25^{\circ}/_{no}$.

In view of present knowledge of the environment in which representatives of *Borelis* have lived, as stenohaline forms in shallow-water regions of warm seas, with the prevailling temperatures from 25° to 30°, in mobile, clear water rich in oxygen, bivalent calcium and magnesium, at normal or higher salinity rate of $35 - 50\%_{00}$ some new information is contributed concerning the Sarmatian Sea.

Recently some new information is obtained about Peneroplid representatives from the lower Middle Sarmatian of Ukraina, Moldavia and Yugoslavia (Serbia) which will be briefly commented upon.

If an abundance of peneroplids was recognized in lower Middle Sarmatian on the territory of Serbia (G a g i ć, 1974), knowing that they live only in sea basins of normal or nearly normal salinity rate as it was the case during the Eocene, Middle Miocene, Maeotian or at the present time in the Mediterranean Sea, then their presence in Yugoslavia and in south Ukraina and S.S.R. Moldavia (D i d k o v s k i y, 1959) during Sarmatian is a new knowledge of the peneroplid occurrence. They could have adapted, though stenohaline forms, to the new conditions of much lower salinity and thereby prove their ecological validity.

Using the criterion of lower salinity (probable to $20^{0}/_{00}$) and not high temperature (also not higher than 20°), representatives of *Borelis melo* should also perhaps be accepted as possible indicators of ecological validity, in which case their correlation in the areas of both Paratethyses during the Lower Sarmatian could be very instructive.

It also should be supposed that *Peneroplis* and *Borelis* faunas in the Sarmatian Sea might have indicated a possible intermittent communication between this and open sea. However, we know today that they are not typical representatives of the discovered sea basins, but are important for their wide ecological validity. Besides, the association of Sarmatian microfossils does not include members of open sea basin.

I should emphasize that, according to the Sarmatian subdivision in the areas of the Central Paratethys (J i r i č e k, 1972), beds 1 - 12 in the considered section correspond to Lower Sarmatian sensu stricto ("a"), beds 13 - 39 to the Middle Sarmatian sensu stricto ("b" + "c"), and bed 40 to the Upper Sarmatian sensu stricto ("d").

However, I take that beds of this section can be separated, by the similarity of their microfossils associations those of the Volhynian and Bessarabian in south Ukraina and Moldavia, as the Lower Sarmatian and lower Middle Sarmatian.

A brief reference will be made to some of the published data concerning the occurrence of *Borelis* species in Middle Miocene sediments of neighbouring countries as schematically represented in Fig. 5 which is copied from the article by B ignot et Guernet (1976).

It is mentioned in Hungary in Bulimina and Spiroplectammina horizons of the Upper Badenian in boreholes Vilyvitánjy 6 (60 - 62 m),

Institutul Geologic al României

Fuzerhajata 2 (715 - 716 m) according to I. L. Koreczne (1973; loc. V), and the Lower Badenian Lajtovac Limestone on Mecsek Mountains (same author, 1968).

In Austria, in Badenian holostratotype at Baden-Soos clay-pit, in sandy lens, *Borelis melo* is encountered among the microfauna(P a p p, 1978) and in faciostratotype of Stiefingtal (K o l l m a n n - R \ddot{o} g l, 1978).

Fig. 5. – Borelis deposits in the Miocene of the peri-Mediterranean regions of the Paratethys and of the Middle East, after different with $C_{\rm e}$, $D_{\rm e}$ is a set and $C_{\rm e}$ ($C_{\rm e}$ as $t_{\rm e}$ = 1076)

authors (G. Bignot and C. Guernet, 1976).

Besides the mentioned ones, some of the localities quoted in the present paper are also marked; I, Serbia; II, Bosnia; III, Vojvodina – Yugoslavia; IV, Romania (Intra-Carpathian depression); V, Hungary; VI, Poland; VII, Bulgaria; VIII, Volino-Podolsk plate; IX, Cis-Carpathians; X, Stepnoi Crimea; XI, Kerch Peninsula; XII, The Black Sea littoral.

1, Borelis curdica; 2, B. melo; 3, B. haueri; 4, B? rotellus; 5, Miogypsines in association; 6, Lepidocyclines with Borelis; 7, biotopes actual with B. schlumbergeri.

In Poland, *Borelis melo* is identified near Bochnia (loc. VI) in Chodenice Beds of Lower Kossovian, and in Grabowice Beds of Upper Kossovian (L u c z k o w s k a, 1955). It is also found in Lower Badenian

12 - 0, 50

of Benczyn near Wadovice, together with *B. haueri* and *B. rotellus* (Łucz-kowska, 1957).

In Romania, in the western part of Intracarpathian depression, Borelis melo is encountered in Volhynian calcareous-marly sediments of Zarand Basin (I o n e s i, S a g a t o v i c i, 1970; loc. IV), and in Caransebeş-Mehadia Basin (P o p e s c u, M a r i n e s c u, 1978) in Upper Badenian organogenic limestone. A biozone with Borelis melo from borehole in Upper Badenian limestone and marl is mentioned northeast of the Moesian Platform (V a s i l e s c u et al., 1971). It is also mentioned (P o p e s c u, 1979) in the Upper and Lower Badenian of Mehadia Basin, Maramureş, Transylvania, etc., and Borelis rotellus in Upper Badenian of Oltenia, Muntenia, Banat and Transylvania.

In Bulgaria, the species *Borelis melo* and *Borelis haueri* are found in the Upper Badenian of northeast Bulgaria, in the village of Ohrid (T z a n k o v et al., 1965), loc. VII.

In trans-Carpathians (V englinskiy, 1958, 1975) in sandymicaceous clay of Lower Badenian Tresvenian suite on Solotvin slope, Borelis melo and B. rotellus (d'Orb.) are found in loc. IX.

In Volhyno-Podolsk plate, *Borelis melo* is encountered in Ternopol Beds of the Upper Badenian (V englinskiy, 1975) in loc. VIII; on Kerch Peninsula (loc. XI) in green clay and marl of Konka Horizon of the uppermost Badenian, and in limestone of the same horizon in Stepnoy Krim, loc. X, and near the Black Sea depression, loc. XII (G oretskiy et al., 1974; V enginskiy, 1975).

The species *Borelis melo* is found in many well-developed specimens. mentioned as noteworthy in upper lagenid zone and Sandschalen zone localities (P a p p et al., 1978).

Of all the mentioned localities in neighbouring countries only one is in Lower Sarmatian limestone; it is the Zarand Basin of western Intracarpathian Basin of Romania (loc. IV). This *Borelis*, while represented by sparse specimens, can be correlated, only attention should be given when microfauna is studied from Lower Sarmatian sediments for determining the presence of the species *Borelis melo*.

Borelis melo and Borelis haueri have been found in Yugoslavia in Badenian formations and Borelis melo in Lower Sarmatian sediments, too. Each of these species in Central and Eastern Paratethys is mentioned to have come from Badenian sediments.

In the Mediterranean domain, representatives of *Borelis* occur somewhat before that of *Orbulina*, in the early Langhian, and disappear in the late Tortonian, while the above mentioned authors maintain the idea that *Borelis melo* continues to exist into the recent age and is found at present time as *Borelis pulchra* (d'Orb).

The discovery of *Borelis melo* in the Lower Sarmatian of the Central Paratethys allows a wider correlation with those in the Mediterranean, i.e. zones of B l o w (1969). Thus the Lower Sarmatian of the Paratethys could generally correspond to the terminating part of zone N13, to whole of zones N14 and N15 and, finally, to the lower part of zone N16.

The lower Middle Sarmatian also contains instructive microfossil data, in scope of regional correlation of the Western and Eastern Para-

178

tethys, but also both of these realms and the Mediterranean. This will be discussed in the following publications of the present author; in the meantime, we hope that *Borelis melo* representatives will be found in the Lower Sarmatian and in other regions of the Central and Eastern Paratethys.

REFERENCES

- Azéma J., Fernex F., Hottinger L., Magné J., Paquet J. (1968) Borelis melo (Fichtel et Molli) dans le Miocène de la partie orientale des Cordillères bétique (Espagne). Bull. Soc. géol. France, (7), X, Paris.
- Bignot G., Guernet C. (1976) Sur la présence de Borelis curdica (Reichel) dans le Miocène de l'île de Kos (Grece). Geol. méd., t. III, n 1, edit. univ., Provence.
- Blow W. H. (1969) Late Middle Eocene to Recent Planctonic Foraminiferal Biostratigraphy. Proc. First Intern. Conf. Planct. Microp., Vol. 1, Geneva.
- Didkovskiy V. Y. (1955) Novi dani pro posshirennya foraminifer iz rodoni Peneroplidae. Akad. nauk ukr. RSR Geol. zgur., tom XV, vip. 2, Kiev.
 - (1964) Biostratigrafiya neogenovikh otlozheniy iuga russkoy platformi po faune foraminifer. Minisl. vis. i sred. spec. obraz. USSR, Kiev.
- Džodžo-Tomic R. (1959) Middle Miocene (Tortonian) Foraminifera of the wider surroundings of Negotin-East Serbia (Saren-Kamen, Stubik, Bračevac). Bull. geol., liv., III, Inst. geol. Montenegro, Titograd.
 - (1963) Microfauna of the Buglovian horizon from Timočka Krajina with special regard to its stratigraphical position. Bull. Inst. geol. et geoph., Ser. A, t. XXI, Belgrade.
 - (1964) Foraminifera of the Mediterranean II and Sarmatian in Serbia and Their Biostratigraphic Significance. *Geozavod, Dokumentation Fund, Beograd.*
 - (1975) Results of Micropalaeontological Examination of Tortonian and Sarmatian Sediments from Sheet Beograd.-Ibid.
 - (1979) Foraminiferal fauna of the Marine and Brackish Miocene in East Serbia. Bull. Mus. Hisl. Natur., Ser. A, liv. 34, Beograd.
- Eremija M. (1970) Biostratigraphic analysis of the Miocene deposits and fauna in the Prnjavor basin. Doclorial thesis, Beograd University.
- G a g i č N. (1959) Micropalaeontological Review of Miocene Fauna from Oil Wells near Boka in Banat. Beograd University, School of Geology.
 - (1965) Results of Micropalaeontological Analysis of Neogene Sediments from Sheet Zvornik 52 Geozavod, Documentation Fund, Beograd.
 - (1971) Micropalacontological Analysis of Neogene Sediments from Sheets Turnu Severin 51 and 53 and Quaternary Sediments from Sheet Donji Milanovac 54. – Ibid.
 - (1972) Micropalaeontological Analysis of Neogene Sediments from Sheets Obrenovac 53/2 and 54/1, 54/2 and 54/3. – Ibid.
 - (1974) Microfossil Assemblage from Sarmatian Limestones of the Village of Dučina (North Serbia). Bull. Mus. His. Nal., Belgrade, Ser. A., liv. 29.
 - (1974) Micropalaeontological Analysis of Tortonian and Sarmatian Formations from a Borehole Section of Beograd Territory. Geozavod, Documentation Fund, Beograd.
 - (1974) Micropalacontological Analysis of Neogene Formations from Borchoie B-1/73 at Vencani-Ibid.

180	N. GAGIĆ 12
_	(1974) Micropalaeontological Analysis of Quaternary Formations from Sheets Obrenovac
	51/1 and $51/3$ and Neogene Sediments from Sheets Obrenovac $51/1$ and $51/3$ and $52/4$. – Ibid.
-	(1975) Micropalaeontological Analysis of Neogene Sediments from Sheets Pozarevac $54/4$ and, $52/4$ and $54/3$. – Ibid.
-	(1977) Micropalaeontological Examination of Neogene Sediments from Koceljevo Environs. – Ibid.
-	(1980) Micropalaeontological Analysis of Neogene Sediments for the Paper on Geological Engineering Investigation of Underground Line Sector M_1 and M_2 , Stari Grad, Beograd. – Ibid.
Gore	tsky V. A., Didkovsy V. Ya. et al. (1974) Stratigraphic sequence of neogenic
	deposits in platform Ukraine AN Ukr. RSR Geol. zhur., tom XXXIV, vip. 6, Kiev.
Ione	si B., Sagatovici A. (1970) Contributions à l'étude de la microfaune des dépôts Sarmatiens du Bassin de Zarand. Anal. Șliint. Univ. "Al. I. Cuza" din Iași (s.n.), sec. II, b. Geol., Tom XVI, Iași.
Jiři	ček R. (1972) Das Problem der Grenze Sarmat/Pannons in dem Wiener Becken, dem
	Donaubecken und dem ostslowakischen Beckeus. Min. Slovaca, rc č. 1V č 14, Bratislava. S. Nová Ves.
Kore	czné Laky I. (1968) Miozäne Foraminiferen des östlichen Mecsek-Gebirges. Mag. All. Földt. Evkön., Budapest.
	(1973) Examination of Foraminifera in Miocene rocks of the mountains. M. All. Foldt.
	Int. Evi Jelen., Budapest.
Lucz	Kowska E. (1955) Iortonian Foraminitera irom the Chodenice and Grabowice
- ((1957) Stratigraphy of the Lower Tortonian Clays from Benczyn near Wadowice on
Mark	ovic V. (1956-1981) Reports on Deep Borcholes on the Territory of Vojvodina. Documentation Fund "Naftagas". Novi Sad.
Muld	ini-Mamužić S. (1955) Mikropaläontologische Untersuchungen im Jungstertiär des Beckens von Tuzla (Nord-Bosnien). Verh. Geol. Bundesansl., H. 2, Wien.
Papp	A. (1978) Holostratotypus : Baden-Soos (südlich von Wien), Foraminifera. Chronostra-
- i	Gicha I, Čtyroká P. (1978) Allgemeine Charakteristik der Foraminiferenfauna m. Badenien. – Ihid.
Para 1 1	monova N. P. et al. (1979) Palaeontological Characteristics of the Sarmatian s.l. and Macotian of the Ponto-Caspian Area and Possibilities of Correlation to the Sarma- tian s. str. and Pannonian of Central Paratethys. Ann. Geol. Pays Hell., Tome hors sér., fasc. II; VIIth Int. Cong. Medit. Neogene, Athens.
Petro	o v i č M. (1967) Die mittelmiozänen Foraminiferen des Jadar-Beckens. Doctorial thesis, Beograd University, 1963.
- (1969) Biostratigraphic analysis of Foraminifera Tortonian sediment in Northeast Pot- kozarje (Northwest Bosnia). Bull. geol. 14, Sarajevo.
Pope	s c u G. (1979) Kossovian Foraminifera in Romania. Mêm., Insl. Géol. Géoph. XXIX, București.
, c	Marinescu F. (1978) Le Badenien de la Dépression de Transylvanie et de la partie orientale de la Dépression Intracarpatique. Chronostraligraphie und Neostratotypen, Badenien M_4 , Bratislava.
Popo	vić R. (1968) Sur l'age des sediments du bassin de Slatina dans la Serbie orientale. Bull. Inst. Res. géol. géoph., t. XXVI, Ser. A, Belgrade.

- Gagić N. (1969) Nouvelles données sur le Tortonien de la partie mediane du Bassin de Timok (Serbie orientale). Ibid., t. XXVIII.
- Souaya F. J. (1963) Micropalaeontology of four sections south Qoseir, Egypt. Micropal., vol. 9, no. 3, New York.
- Spajić O., Džodžo-Tomić R. (1973) Biostratigraphische Analyse der miozanischen Sedimenten aus der hydrogeologischer Forschungohrungen aus der Umgebung Belgrads. Ann. Geol. Pen. Balk., T. XXXVIII, Belgrade.
- S t e v a n o v i c P. (1949) Données stratigraphique complémentaires sur les couches de la Serbie Occidentale et la Choumadie. Bull. Mus. Hist. Nat. Pays Ser., S. A, liv. 2, Belgrade.
- Tzankov V. et al. (1965) Les associations microfossiles en Bulgarie. Dir. gen. de Géol., Sofia. Vasilescu E., Rosa A., Negoiță F. (1971) Tortonianul din partea de nord-est a platformei moesice. Petrol și gaze, 22, Nr. 10 București.

Venglinskiy I. V. (1958) Foraminiferi miotsenu Zakarpatja - AN USSR, Kiev.

- (1975) Foraminiferi o bilstratigrafiya miotsenovikh otlozhenii zakarpatskogo progiba.
 -AN, USSR, Kiev.
- NOTE: The works quoted from the Geozavod Dokumentation Fund are not translated into foreign languages.

а С

19

Institutul Geologic al României

N. GAGiC. Representatives of the genus Borelis in the Badenian and Lower Sarmatian of Yougoslavia

L	THO	STRATIGR	APHIC SECTION OF SARMATIAN SEDIMENTS N THE MISLJEVAC STREAM
	30,30	m	
M. Sarmatian	Peneroplidae		Yellow vuggy limestone wilh an abundance of Peneroplidae: Spirolina pseudostelligera, S.grandis, S.sarmatica, Spirolina sp., Dendritina elegans, Dendritina sp., Peneroplis sarmaticus, Peneroplis sp., like and small miliolids, Ammonia ex gr. beccarii, nubeculariids (adhesive forms)
	-2010		
	39		Yellowish vuggy limestone with Ostrea, Dasycladacea (Cymopolia sp.) and occasional small miliolids
	38		Near the top yellowish vuggy colific timestone are encountered with moulds or small gastropods and sparse small miloilids in alternation with brown colific limestone with Lithoporella sp. and Halicoryne morelleti in colifes, and sparse small miliolids
		+ 11,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	Yellow-brown to yellow-gray vuggy limestone with Litho- porella sp., very few small milialids and occasional mould or contour of recrystallized gastropod
5	37	14+5+++++++ 4+1+++++++++++++++++++++++++	Light-yellow chalky limestone with abundant Borelis mel
	36	+++++++++++++++++++++++++++++++++++++++	Gray-brown vuggy limestone with moulds of small gastropods,
Ø			many small miliolids and very sparse Borelis melo Gray-brown compact limestone with Borelis melo, sparse
	35		Lithoporella sp. and launal moulds
		~~~~~	
+	Uninotao 34		Yellow-greenish carbonate clay with abundant elphidium and ostracods = Elphidium antoninum, E. hauerinum, Aurila notata, Aurila sp., Xestoleberis plana
D	E	~~~~	
	idiu	222	
Ε	32 + 33 32 + 33		Yellow colitic limestone with sparse miliolids, elphidiums, astracods, and of the top of the laers (33) with: algae, Halicoryne morelleti (Acetabularia) <b>/ayers</b> Lithoporella sp. (red algae)
<b>L</b>			Gray-yellow sandy limestone with few sections of miliolids, nonions, elfidiums, ostracods and mollusks Yellow-brown compact limestone with faunal moulds and sparse miliolids
۵	25 - 31		Yellow carbonate sand with nonions and elphidiums Yellow-brown compact limestone with Borelis melo (28) Yellow-brown sandy clay with sparse floral remains Yellow carbonate sand of oditic habitus with E. haurinum, Aurila notata and Aurila sp.
S	60		Tellow-gray sandy clay with microfauna (25) Yellow low sandy limestone with sparse small nonlons Gray-blue sandy clay (22) with E. haucrinum, E. antoni- num, Xestoleberis sp., and an intercalation of bluish- gray limestone (23) with macrofaunal mouids and
	22+2		occasional elphidiums
	20	222	Grevish to light brown sandy clay with microfrank
	18	222	Light - gray sandy clay with A. notata and Xestaleberis sp.
	17 16 a		Gray-yellow highly sandy clay without microfauna
	16	0 0 0	Gray, partly bluish clay sandstone passing upward into
	19 14		Light-gray to light-brown carbonate clay with macro- fauna and with Aurila notata, Aurila sp., Elphidium macellum and Xestoleberis sp.
	12	~~~~	Bluish - gray sandy clay with A. beccarii, C. hugarica Yellowish - gray clay with A. beccarii, C. hugarica
<u>د</u>	10	2727272	Gray-blue sandy clay with prevailing ostracod fauna Dark-gray sandy mart with small miliolids and estracous
	8		Dark-gray sandy clay with: E reginum, E. crispum, Cythe- ridea hungarica, Aurila mehesi, Hemicyprideis cf. dacic.
e	6		Greenish sandy clay with prevailing ostracod fauna
	5	~~~~	Gray-blue sandy clay, with abundant microfossils Gray-blue sandy clay, with macrofouna containing: E_reoi-
2	2		usun Eposepuluulin, 'A. UECCATU, C. DUNGATICA, A. MERES
0	ium reginum	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Gray-greenish sandy clay with locally blue and yellow clay (3) of the same type without microfossils
	phid	~~~~~	
	Ш	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	1		Yellow-blue sandy clay without microfossil content
_	0,0m		
V J A R	UL IN	STITUTULUI	DE GEOLOGIE ȘI GEOFIZICĂ, VOL. LIX

Institutul Geologic al României

IGR,

# BIOCHRONOLOGICAL SIGNIFICANCE OF THE NEOGENE MACROFLORAS IN ROMANIA¹

BY

## RĂZVAN GIVULESCU², NICOLAE ȚICLEANU³

## 1. Introduction

The use of Neogene fossil plants for biochronological purposes has constituted a constant concern of the Romanian palaeobotanists the more so as in Romania there are many deposits which can be dated only on the basis of the macroflora content.

The first method used for dating the deposits with fossil plants was the comparison with palaeofloras whose age was specified on macrofaunistical criteria (Pop, 1936).

Another method that can be applied only to rich fossil floras, based on the ratio between the exotic and the native elements, was intoduced by S z a f e r (1946) and used by G ivules cu (1957, 1961, 1969).

Lately, G i v u l e s c u (1979) studying the distribution in time of the fossil alga *Cystoseirites partschi* has ascertained that in Romania it reaches its maximum development in the Lower Sarmatian; thus he succeeded to date the flora at Tîmpa.

The intensification of the palaeobotanic investigations led to the determination of fossil plant associations characteristic of certain time spans (Givulescu, 1967 a; Țicleanu, Micu, 1980).

In the last decade the progress of the palaeobotanic researches in Romania led, on the one hand, to the finding out of new fossil floras and the completion of the palaeoflora synopsis and, on the other hand, to the revision of known palaeofloras. Concomitantly, the stratigraphic studies specified the age of some floras and thus a more correct interpretation of their evolution was made and a new attitude towards the biochronologic significance of the fossil plants was taken up.

¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981 September 8 - 13, Bucharest, Romania.

² Institute of Higher Education, Baia Marc.

³ Institute of Geology and Geophysics, str. Caransebes 1, 78344 Bucharest, Romania.

2

## 2. Analysis of the Biostratigraphic Value" of the Taxa

With a view to analyzing the biostratigraphic value of the taxa, in the present paper we have presented only the taxa described on the basis of foliar or fruit imprints, both from the papers printed up to now (Givulescu, 1960, 1966, 1973, 1978; Semaka, Givulescu, 1965; Givulescu, Picleanu, 1977) and from some papers which are in press or unpublished data.

The Neogene flora synopsis in Romania includes 579 taxa specifically determined, out of which the seventh part may be analysed in biostratigraphic respect. It is because most of the taxa known till now – -382 taxa – have been found only in one or two fossiliferous sites and other 97 are not certain. The taxa with obvious common characters – -*Typha latissima, Phragmites oeningensis,* etc. – have not been discussed. Some taxa, although mentioned once in the Miocene fauna, are of special significance as they continue in the Oligocene flora.

Figure 1, including the selected taxa, shows 5 main groups of taxa, developed in the following intervals⁴: Oligocene-Lower Burdigalian, Oligocene-Pannonian E, Aquitanian-Pliocene, Sarmatian-Pliocene, Pliocene-Lower Pleistocene.

There is only one taxon - C. partschi — that occurs only in the Volhynian-Lower Bessarabian, which it characterizes. This fact is due to its nature, this taxon being a marine alga.

#### 2.1. Oligocene-Lower Burdigalian Taxa

Although in a small number, the fossil plants of this group (Lygodium kaulfusii, O. lignitum, C. furcinervis, B. miocenicum) have biostratigraphic significance because, in association with elements which begin their evolution in the Aquitanian, they characterize the Aquitanian-Lower Burdigalian.

## 2.2. Oligocene-Pannonian E Taxa

The number of the taxa typical of this group is considerable: S. abietina, S. sternbergii, T. dubium, L. salicornioides, A. gaudinii, E. orsbergensis, M. lignitum, C. bilinica, B. prisca, C. decheni, D. cinnamomeum, P. princeps, P. braunii, O. herii, B. antiqum, L. primigenia, L. pseudoprinceps, P. platanifolia, S. falcifolius, Z. zizyphoides, R. rossmasleri, A. protogea, G. lyelliana, G. knorii, Palmae div. sp. These palaeoflora elements characterize the Miocene flora in Romania, differentiating it from the Pliocene one by the large number and frequency of the Lauraceae, the presence of exotic Juglandaceae and Fagaceae, especially E. orsbergensis and C. decheni, as well as the palmtrees, their last specimen — — possibly relic—being described from the flora at Băița (G i v u l e s c u, R ü f f l e , 1971).

Some taxa exceed little the Pannonian E, they being relics since this interval or even earlier. Exceptionally taxa of this group have been mentioned in the Pliocene and Lower Pleistocene but most of them seem. to be errors of determination. Fig. 1. — Stratigraphic occurrence of the main Neogene taxa in Romania.

- 17 81	BNE	X	1.	N	N	Z	EN	3	PLIQ	ENE	JUS
TAXA	OLIGOCE	MULTINIA	BURDIGAL	LANGHI	AINE SON O	SARMATIA	E MEOTIL	PONTIA	DACIAN	ROMANIA	PLEISTOCH
Contracto tas marine hi	1	2	3	4	5	1.6	7	8	9	10	11
Lunddum keulter	1					-					
Samueda lanutur											
Plays Instephylic											
E leadalaemiz							-		-		
e lavaelannis						-	1				1
former a staustered											-
S abiol on					16	1				-	
Second of the						1	1 0		-		1
torealum avalum	-				1 8	1					1
alys cetrabus evropiseus	-	1				1	1				1
L'houedrifes sa icomicidas	10		-	-	1.	-	1				
kyrica lightlam	-		-			1					1
Jugiane souminate	-	100		-	h0	100	1	-		-	1-
E peinarquic orsborgensis		-	-		1	1	-	-	-		1
Cerya bilinica	-		-	-		-	+		10		ŧ.
C. ser cafolia		-	-		-	121	-		-		
C minor						-		-		-	1
Prerocaryo denticulata	-				-	-	-	-	-	-	-
Salle varians							-	-			-
5.macrophy. a	-	-			-	-	-		-	-	
Populus Inflor			•				-	-	-	-	-
Populus balsemeides		1			1		-		-		1
Berulo prisco	-			-	-	-	-	1		-	
0.macrophylia					1	_	1		_		1
Caroious grandis											1
Atous letiar					1	1	12.15				-
A acustais	-	2.1				1.	1.				1
Acrocitie			5		1				1		1
Neur belerchiei							F				1
Seeul albaueta						1			F		1
Poges chenics a							-		1		1
P.SHVQNCC IESSINS							1				1
Portentains tossilis									Í	-	1
Perione pristing				1	1		1		-		1
Castenca atema						1			-	1	1
C pumila			6 (			-				-	1
CRUDIO/II					-	-	-			-	1
Calonopsis decneni							-		1. 1		i i
C. Turcinervis											1
Guercus mediteranen	1 3	1 -		1						-	-
Q. drymeja						-		-	<b></b>		r-
0 carilfolia						-					
G.grandicentate			1		1			1	-	-	-
g pantice micconice					1						
aseudorobur						-				511	-
C.p.seudocastanea						-				_	1
Ultrus argunil											
l'avecnidalis	1					1					
Peikovo zeikovnelolin				_		L					T
Benzoin coligi m			-								_
Dophoraana dia amaman											1
0. bilinica		. 1			1.5						
Currentry but noinigani-	135 2			1		-					1
va opnyr an orenigend			10 M				<b>—</b> ···				1
c cseudoprinoieps				1	100						
Persed princeps			-		-						1
P. Stoucia						-					1
Scoled heru		-	-	-		-					1
Hatanus statanifelia	-	-	-		-				-	1	1
Linuidomber europoeum		-	-			-	-				+-
Cossiophyllum phaseolites	-		-								+
Gleditschid lyelliana					-	-					+-
a, k - or il					-						-
Rocinia regeli			-	-		-					-
Acer sanche crucis	1				1			1			1
A. tricuspidatum						1	1				
Saaindus Intelfetine	10										1
Okompus reconstant			5	1	1				. *		1
Transfer Transfer				-	-	-	1.1.1				1
reyprus erzypholowi	- 3		1			-			1		1
sraunia inicelono			1					-	-	-	T
Anaromeaa protogea	-	-	-	-	-	-					1
Balash asaf di Sarah						1				12	1
Baloghioephyllum miocenicum			1								1

Institutul Geologic al României

It is noteworthy that among the Miocene taxa there are some which have a maximum development at certain stratigraphic intervals: L. salicornioides as well as E. orsbergensis and G. lyelliana are frequent in the terminal Badenian-Lower Bessarabian and P. platanifolia in the Bessarabian.

#### 2.3. Aquitanian-Pliocene Taxa

This group is represented by the following taxa: G. europaeus, J. acuminata, C. sereaefolia, P. denticulata, S. macrophylla, C. grandis, L. europaeum, C. phaseolites, A. tricuspidatum, and B. tiliaefolia.

Mention should be made of the taxa specific to the coal-forming bog facies: G. europaeus, B. tiliaefolia, L. europaeum, and A. tricuspidatum. In our previous papers (Givulescu, 1967b) we have pointed out that G. europaeum + B. tiliaefolia association presents maximum development at several stratigraphic levels, beginning with the Sarmatian. L. europaeum has its maximum development in the Upper Pontian-Dacian.

Obviously, the plants typical of this group are very long-ranged; it may be explained by a wide ecologic valency and especially by adaptations to temperature, an ecologic factor which, in spite of oscillations, had a general background of continuous decrease from the Oligocene up to the Pleistocene.

## 2.4. Sarmatian-Lower Pleistocene Taxa

The appearance of these taxa represents a decisive moment in the floral evolution. These taxa include types which appear in the Sarmatian, more rarely in the terminal Badenian, and reach the Lower Pleistocene, most of them showing their maximum development in the Pliocene. The taxa of this group are: P. leptophylla, P. taediformis, A. alba, C. minor, P. latior, P. balsamoides, B. macrophylla, A. latior, A. graeilis, A. kefersteini, F. attenuata, F. silvatica fossilis, Parrotia pristina, C. atavia, C. pumila, C. kubinyi, Q. mediteranea, Q. drymeja, Q. neriifolia, Q. pontica miocenica, Q. pseudorobur, Q. pseudocastanea, A. sancte crucis.

As one may observe, with very few exceptions, all these elements are Arcto-Tertiary, being in contrast to the group of elements characterizing the Miocene, where the exotic taxa were prevailing.

#### 2.5. Pliqcene-Lower Pleistocene Taxa

The taxa of this group begin their evolution in the Pannonian G/H, concurrently with the flora of Chiuzbaia, when the first species of *Quercus* of roburoid type occur (Givulescu, 1980). The maximum development of the species *Quercus* with a lobate leaf, beside that of Betulaceae, Ulmaceae and *Fagus*, constitutes the characteristic feature of the Pliocene flora in Romania.

Generally speaking, the evolution of the Neogene flora has three main moments. The first moment, in the Aquitanian, characterized by

Institutul Geologic al României

5

the appearance of many new types, which will constitute the Miocene flora, some of them reaching the Pliocene. The second moment is located in the basal Sarmatian when several new types appear which will coexist with old Miocene elements up to the Pannonian E. Hence a highly important concurrence zone resulted, superposed to the Sarmatian-Pannonian E interval. The third moment coincides with the Chiuzbaia flora — Pannonian G/H — when most elements constituting the Pliocene flora appear.

Following the extension in time of the main taxa of the Pliocene flora one may observe the persistence of most of them on large stratigraphic intervals, generally including several stages; it reduces the possibility of their use in the definition of certain biostratigraphic units characterized by a wide areal distribution within a short time interval. In spite of this fact some biozones, characterizing shorter intervals can be delimited. Thus, the concomitant existence of the taxa *C. furcinervis*, *L. kaulfussi* and of Arcto-Tertiary elements represents a concurrence situated in the Aquitanian, possibly the Burdigalian base. Close to the size of a stage is also the concurrence zone between *A. alba*, which occurs in Pannonian B/C, and the last appearance of the species *E. orsbergensis*, found in the Pannonian  $E_1$  of Delureni.

In case of the three species of Fagus (acc. to G i v u l e s c u, unpublished data), although their occurrence does not present necessarily distinct biostratigraphic limits, two interval biozones can be delimited : the former only with F. attenuata, corresponding to the Sarmatian (sensu S u e s s), and the latter, when F. attenuata coexists beside F. silvatica fossilis, covering the Upper Sarmatian-Lower Pontian interval.

Although the limits of an acme zone may be subjective, in case of the taxon *C. partschi* there is such a zone in the Volhynian-Lower Bessarabian when, probably due to ecologic optimum conditions, the taxon is developed on a large area from Hungary up to the Caucasus.

## 3. Stratigraphic Value of the Fossil Plant Associations

In order to obtain an image of the succession in time of the different fossil plant associations we used first of all the evidence given by palaeofloras with numerous plants (e.g. Coruş, Valea de Criş, Chiuzbaia) and then the information from several synchronous fossiliferous sites with poorer floras, thus establishing associations based on the frequency of the elements.

We have taken into account the possibility that two floral provinces would have existed simultaneously on the Romanian territory. Thus, for the Volhynian-Lower Bessarabian interval (possibly Middle Bessarabian), a discordance occurs between the fossil plants in the north of the country and those in the central and southern parts. The northern province is characterized by the predomination of the betulaceous type and scarcity of the Lauraceae and Fabaceae. It can be compared with the associations presented by K n o b l o c h (1973) from Hungary and Czechoslovakia. In the central-southern province, the Lauraceae and Fabaceae are found beside Betulaceae which are less frequent, as well as palmtrees. The two provinces have been climatically conditioned, the southern one having a climate with dry influences. Some palaeophytocenoses are generally represented by one vegetal association (e.g. the Aquitanian lauracee association), others, especially beginning with the Pannonian E, correspond to at least two vegetal associations: one of them being forest moor with G. europaeus and the other one with mesophytic forests with the predominance of the Fagaceae, Ulmaceae and Betulaceae.

The succession of the fossil associations (Plate) allows us to ascertain the existence of at least three types. The first association is of Lower Miocene age, within which the exotic Lauraceae and Fagaceae prevail, the Arcto-Tertiary elements being found sporadically. The second association is found in the Badenian-Pannonian  $E_2$  interval and is represented by Lauraceae, Fabaceae, Juglandaceae (E. orsbergensis), Myrica, Sapindus, as well as a few Arcto-Tertiary elements. Concurrently with the Chiuzbaia flora (Pannonian G/H) a clear domination of the Fagaceae, Betulaceae and Ulmaceae is observed.

The reconstitution of the plant associations and the study of their succession in time may bring important contributions to the Neogene biostratigraphy; such a succession of the main plant associations has already been outlined (Givulescu, 1980).

In the present stage of palaeobotanic research we consider that almost all fossil plant associations — except the Lower Burdigalian and Lower Badenian ones which are less known — can be carefully used in biostratigraphic correlations (see Plate).

## 4. Ratio between Exotic and Native Elements

At present, the ratio between the exotic and native elements constitutes one of the most certain methods of age determination (G i v u l e s - c u , 1957, 1961, 1968).



Fig. 2. – Aspect of the curves of exotic elements (1) and native elements (2) for the Upper Miocene floras of Romania and Europe.

The diagram in Figure 2 points out that the age determination is more easily made for floras whose percentage value for exotic and native elements can be calculated.

Although this method has a high degree of precision it is limited first by the scarcity of floras with a sufficient number of taxa which allow the establishing of a correct ratio between the exotic and native

6.

elements, and second by the inherent difficulties to establish living equivalents of the fossil taxa. The latter inconvenience can be eliminated by the intensification of the palaeobotanic researches.

# 5. Conclusions

The use of fossil plants for biostratigraphic correlations for Neogene deposits still requires caution : first of all due to the insuficient knowledge of the fossil flora and secondly because of the reduced number of palaeoflora with enough taxa for the qualitative and quantitative statistic studies. There are also difficulties in connection with the large number of long-ranged taxa some of them sometimes ranging from the terminal Oligocene to the Lower Pleistocene. The facies plant associations (the moor with *G. europaeus*, etc.) persist, without significant qualitative variations, during long time intervals. We should take into account the possibility of the existence of palaeofloristic provinces.

In spite of all these difficulties, at present the age determination on the basis of fossil plants using individual taxa, groups of taxa, fossil associations and, obviously, the combination of them, is possible, at least for some time intervals.

⁴ The stratigraphic divisions used in this paper are according to Moisescu, Popescu (1980) and Andreescu (in press).

#### REFERENCES

- Andreescu I. (in press) Middle-Upper Neogene and Early Quaternary chronostratigraphy from the Dacian Basin and correlation with neighbouring areas. VII-th Int. Congr. Medit. Neog. Athens.
- Givulescu R. (1957) Flora pliocenă de la Cornițel (reg. Oradea). Ed. Acad. R.P.R., 113 p., 19 pl., 3 fig. text, București.
  - (1960) Die fossile Flora Rumäniens. Ber. geol. Gess. DDR, 5, 4, p. 383 432, Berlin.
  - (1961) Bemerkungen über die Pannon-Floren des Boroder Beckens und ihre Verhältnisse zu den Floren von Mittel-Europa. Bol. Jb., 81, 1/2, p. 189 - 200, 3 fig. text, 4 tab. Stuttgart.
  - (1966) Die fossile Flora Rumäniens (erste Ergänzung). Ber. geol. ges. DDR, 11, 3, Berlin.
  - (1967 a) Considerații asupra florelor din Terțiarul Republicii Socialiste România. An. Univ. Buc. s. şl. nat., geol. geogr., XVI, 1, p. 91 - 96, Bucureşti.
  - (1967 b) Stand unserer Kenntnisse über die sarmato-pleistozäne Flora des Pannonische Beckens. Fedd. Rep. 74, 1 – 2, p. 99 – 108, pl. 1, Berlin.
  - (1973) Die fossile Flora der S. R. Rumänien (zweite Ergänzung). Z. geol. Siss., 1.8, p. 1013 1044, Berlin.
  - (1978) Die Fossile Flora Rumäniens (Dritte Ergänzung). D. S. Inst. geol. geofiz., LXIV,
    3, p. 345-378, București.
  - (1979) O contribuție la cunoașterea florei sarmațiene de la Timpa (Hunedoara). Muz. Brukenthal, Slud. Com. - şl. nal. 23, p. 81 - 85, 3 fig. text., Sibiu.

- (1980) Le progrès de l'investigation paléobotanique du tertiaire de la Roumanie. Rew.
  Paleobol. Polyn. 29, p. 35 48, 3 tab., 1 fig. text, Amsterdam.
- , Ghiurcă V. (1969) Flora pliocenă de la Chiuzbaia (Maramureş). Mem. Inst. geol. geofiz., X, 71 p., 17 pl., Bucureşti.
- , Rüffle L. (1971) Die altpliozane (pannonische) Flora des Maramureş (S. R. Rumänien) und ihre Beziehungen zur Flora an der Wende Miozän /Pliozän des nördlichen Tethys-Raumes (Teil II). Geol., 20, 3, p. 263 – 283, 4 pl., 2 fig. text. Berlin.
- , Ţicleanu N. (1977) Flore fossile de l'Egérien-Sarmatien (sensu Suess) de Roumanie. D. S. Inst. geol. geofiz., LIII/ 3, p. 125 - 149, Bucureşti.
- Knobloch E. (1972) Die gegenseitingen Beziehungen der tschechoslowakischen und ungarischen Tertiärfloren. Földt. Körl. 102, p. 246 – 269, 1 tab., Budapest.
- Moisescu V., Popescu G. (1980) Chattian-Badenian biochronology in Romania by means of molluses. An. Inst. Geol. Góphys., LVI, p. 205 - 224, 1 pl., București.
- Pop E. (1936) Flora pliocenică de la Borsec. Cluj, p. 189, pl. 21, 2 tab. 1 fig. text. Cluj.
- Semaka A., Givulescu R. (1965) Flora Fossilis Rumana. Catalogus genera et species plantarum. Palaeontographica B, 116, p. 55 – 122, Stuttgart.
- Szafer W. (1946) Flora pliocenska z. Kroscienka n/Dunajcem., t. I II, Krakow.
- Ticleanu N., Micu M. (1979) Flore sarmatienne de Corni (district de Neamţ). D. S. Inst. geol. geofiz., p. 399 - 414, 2 fig. text., 1 pl., Bucureşti.

	AGI	E		FOSSILIFEROUS	FOSSIL PLANT ASSOCIATION
<b>MEISIOU</b>	PLEISTOC.			Biborțeni Baraolt. Miclușoara, Doboșeni	Q.robur, Q.pseudosuber, Quercus aff.infectoria, Quercus aff.trojana, Acer monspesulanum, Esilvatica, Eorientalis fossilis, Z. zelkovaefolia, L.europaeum, Carpinus belulus, C.orientalis
LI Z	ROMANIAN			Borsec	F. attenuata, Z. zel kovaetolia, Ccstanea vesca, C. kubinyii, Carya minor, Q. roburoides, cf. Cassia phaseolites, Populus latior. Pterocarya denticulata
	DACIAN			Timișani. Dedovița	1.G.europaeus, B.tiliaetolia, Salix-div.sp.,A.tricuspidatum, Alnus-sp., B. macrophylla-L.europaea 2.Quercus roburoides, Carya-sereaetolia, C.grandis
	A N		%	Chiuzbaia	F.attenuala, Z.zelkovaefolia, Quercus div.sp.(lobate leaves), L.europae- um, Carya minor, Vitis strictum, C.grandis, Acer integerrimum, U.pyramidalis, Betula prisca, G.europaeus
	- -	z	F	Sinersig, Vișag Derna, Sărmășag	1.6.europaeus, B. filiaefolia, A.cecropiaefolia, B.macrophylla, Salix macrophylla, S.varians, A.tricuspidatum; 2.F. attenuata, F. silvatica, U.pyramidalis, C.grandis, Betula-verrucosa, C. berenices
Ц	P O N	1 A	E2	Bāița	1.Geuropaeus, Taxodium dubium, Alnus cecropiaefolia, Braunia tiliaefolia, Betula macrophylla 2.Carpinus grandis,U.pyramidalis, Hovenia dulcis fossilis; last occur- rence of the species Laurophyllum pseudoprinceps and of the palm trect
	A N	N O N	ε1	Delureni	Lauraceae div. sp. Daphnogene div. sp. M.lignitum, G.europaeus, Pinus div. sp., Z.zełkovaefolia, C.kubinyii, Quercus div. sp. L. salicornioides
Z	-	2	D		unknown flora
ш	MEOT	P A N	<i>%</i>	Valea de Criș	L salicornioides, M. lignitum, E.orsbergensis, Thuja af. occidentalis, Tsuga europaea, Pseudotsuga cf. taxifolia;Castanopsis decheni, Q.drymeja, Z. zelkovaefolia, Fabaceae div. sp.,D. cinnamomeifolia, C. kubinyii, S. falcifolius Givolastrobus europaeus, Leuropaeum, Pious div. sp. (binge), D. bilipica.
			-	Corniței	D.cinnamomeu, Juglans cinerea fossilis.C.kubinyii,C.decheni,R.platani- folia, Populus latior, Alnus kefersteini, Z.zelkovaefolia,Fabaceae div.sp.
2	-		A		unknown deposits
D	SARMATIAN	SARMATIAN	(S. Suess)	Racșa, Cavnic, Corni, Baia Sprie Luncșoara. Daia, Sacadat. Feleac, Fizeș, Tîmpa, Deva, Slătioara, Aușeu	Northern province: Z.zeikovaefolia, Quercus pseudocastanea, Liquidam- bar europaeum, J.acuminata, Fagus attenuata, Mlignitum, Parrotia pristina, U.pyramidalis, Acer tricuspidatum Southern province: C.kubinyii, S. falcifolius, Platanus platanifolia, Pinus div. sp.(binae), L.salicornioides, Lauraceae div. sp. Fabaceae div. sp. E.orsbergensis, M. lignitum, B. dryadum, Z.zelkovaefolia
	KOSSOV			Ciocadia, Pîrtage, Hășdate	E.orsbergensis, Castanea kubinyii, Pinus sp.(binae), Libocedrites sali- cornioides, Gleditschia lyelliana, C.berenices, M.lignitum, Betula dryadum, Sapindus falcifolius, D.cinnamomeifolia
-	LANGH.			Cástāu-Orāștie and other sites	Juglandaceae (Juglans, Carya), Lauraceae (L.primigenia, Neolitsea magnifica, D. bilinica, Persea princeps), Pinus div. sp.
-	ALIAN	IPPER			unknown floras
BURDIG	LOWER		Tihāu	Daphnogene cinnamomeifolia, D.bilinica, Litsea sp.,M.lignitum, Juglans acuminata, Carya denticulata, C.mirabilis, Alnus cf. nepalensis, Carpinus cuspidens, U.pyramidalis,U braunii, Z. zelkovaetolia, Cassiophyllum berenicu	
	AQUITANIAN			Coruș	Daphnogene div.sp.(D.bilinica,D.cinnamomeum etc.) Laurophyllum div. sp. Engelhardia orsbergensis,Castanopsis furcinervis,Myrica lignitum Lygodium kaulfussii, Lgaudinii,Rhus neoggerathi,Steinhaurea subglobosa, Ulmus pyramidalis, Palmae div.sp.

# ICHTHYOFAUNA CHANGES IN THE TERTIARY OF THE CARPATHIANS AND OF THE CAUCASUS¹

BY

#### ANNA JERZMANSKA JANUSZ KOTLARCZYK 3

Well-preserved imprints of fish skeletons of the Teleostei group were reported since many years to occur in the Menilite-Krosno Series of the Carpathians (detailed bibliography is given by K otlarczyk and Jerzmańska, in press) and in the Maikop Series of the Caucasus and adjacent areas (Daniltshenko, 1960; Jafarova, 1964; Fedotov, 1976; Daniltshenko, Endelman, 1977). Fairly long time interval of accumulation of these deposits (from Lower Oligocene to Burdigalian, inclusively, i.e. cca. 20 m.y.) suggests the possibility of variation of the Ichthyofauna in time. In fact, as follows from detailed studies, there are distinct analogies between successions of some ecological assemblages and simultaneous appearance of some genera in both regions.

Consequently, the present authors attempted a correlation of the Carpathian and Caucasian fish assemblages. The study consisted, first of all, in estimating to what degree the ichthyozones of local ecostratigraphic subdivision for the Carpathian region (K otlarczyk, Jermańska, 1980) confirmed by otolith examinations (Brzobohaty, 1981) can be applied in the Caucasian Basin. The obtained biostratigraphic data, allowing to make such an attempt, can be summarized, as follows:

In the Carpathians — during the deposition of the Oligocene-Lower Miocene Menilite-Krosno Series there were distinguished (K o t larczyk, Jermańska, 1976: lower bathypelagic assemblage (IPM 1 zone) younger neritic-sublittoral assemblage (IPM 2 zone) and upper bathypelagic assemblage (IPM 3 to IPM 6 zones). Ecological character of the youngest, still poorly examined, Lower Miocene assemblage

¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981 September 8 - 13, Bucharest, Romania.

² Laboratory of Palaeozoology, Zoological Institute, Wrocław University, ul. Sienkiewicza 21, 50 - 335 Wrocław, Poland.

³ Laboratory of Geology and Mathematical Geology, Institute of Geology and Mineral Deposits, Academy of Mining and Metallurgy, Al. Mickiswicza 30, 30 - 059 Kraków, Poland.

(INM O zone) (Jerzmańska, Kotlarczyk, 1981) cannot yet be established precisely.

In the Caucasus — in the Maikop Series D a n i l t s h e n k o (1960) established the occurrence of different Ichthyofaunal assemblages in stratigraphic sequence. The oldest deep-water fish assemblage of the Pshech Subhorizon display different taxon composition in its lower and upper parts. This refers first of all to lack of fishes with photophores (Gonostomatidae, Sternoptychidae, Myctophidae) in lower parts (Planorbella Bed) and their appearance only in the upper one (Amphisyle Bed). On this basis, Daniltshenko (1960, p. 175) evaluated the depth of this basin to be at least 1000 m. In the overlying sediments (Polibin and Morozkin Balka subhorizons) the fish remnants are very scarce. Worth mentioning is the occurrence of shallow-water *Hipposyngnatus* convexus Danil. in the Morozkin Balka Subhorizon (Daniltshenko, 1960, p. 85). In the upper horizons (Miatlin-Mucidakal, Riki and Zuramakent), there appears a fish assemblage which, despite some differences in temporal occurrence of taxons, is characterized by lack of bathypelagic fishes. Daniltshenko (1960) explains this fact by changes of depth of the upper boundary of hydrogen sulphide zone in the basin. Consequently, according to the fish data, he does not estimate the depth of the basin but that of water layer free of this poisoning gas. During the deposition of the Miatlin-Mucidakal Horizon sediments, this layer would be not more than 300 in thick, whilest during sedimentation of those of the Zuramakent Horizon — even 400 - 500 m (Daniltshenko, 1960, pp. 176, 179). Later discovery of benthic Pleuronectiformes in the Zuramakent Horizon (J a f a r o v a, 1966) and the development of abundant benthopelagic Gadidae in all the horizons of the Maikop Series (Fedotov, 1976) impairs from paleontologic viewpoint Daniltshenko's hypothesis on the variations of depth of the H₂S layer as the cause of ecological changes of Ichthyofaunal assemblages in the Caucasian Basin.

The present state of taxonomic elaborations of individual Teleostei families from the Oligocene deposits of the Caucasus and the Carpathians is far from being complete. It seems, therefore, that the number of species, described till now for each of these areas, cannot reflect the original diversity and endemism of Ichthyofauna in parent basins, representing the same biogeographical province. This conclusion results e.g. from the fact that apart from comparatively small amount of common fish species, corresponding to cca. 20 percent of all of them, much more numerous are those "endemic" for each of the areas in question, even for their different parts. Successive revisions indicate that these are only synonyms of earlier estimated forms. It seems that monographic elaboration of individual families should increase the amount of taxons common for these areas. This can be exemplified by Gadidae, being one of the better examined families in the last decade. In the Miatlin-Mucidakal Horizon of the Caucasian Paleogene deposits, Fedotov (1976) established the occurrence of *Palaeogadus simionescui* (S i m .), being the index species in the IPM 2 zone of the Carpathians. Besides, our recent studies have shown the presence of the genera Palaeomolva D a n i l. (Gadidae) and Pseudotetrapturus Danil. (Palaeorhynchidae) (Jerzmanska —





Tentative correlation of the Carpathian ichthyozones with the Caucasian fish horizons.

🦕 Institutul Geologic al României

unpublished data) in the upper part of the Menilite-Krosno Series. These genera were considered to be endemic for the Caucasus (D a n i l t s h e n k o, 1960; F e d o t o v, 1976).

The range of this paper does not allow for a detailed taxonomical discussion. Nevertheless, it is necessary to emphasize an urgent need of revision of other Teleostei families on the ground of comparative studies on the collections from the Caucasus and the Carpathians. The estimation of endemism and heterogeneity of Ichthyofauna in these areas is not possible without strict cooperation of palaeoichthyologists.

As follows from the presented comments, the parallelization of fish assemblages in the Caucasus and in the Carpathians will be based both on the occurrence of species and of genera. The latter ones are used only in these cases when the form cited occurs only in one type of ecological assemblage (e.g. deep-water).

The similarity of taxonomic composition of fish assemblages of the Caucasus and the Carpathians in individual parts of the porfiles is presented in Figure. The following conclusions can be deduced from this comparative study.

1. The time range of occurrence of pelagic fishes of the *Palimphyes* Ag. genus and Lepidopus glarisianus (Bl.) is the linking factor of the IPM 1 zone with the Pshech Subhorizon in the Caucasus. Other species of the IPM 1 zone occur in the Caucasus exclusively in the Amphysile Bed. In our opinion, this heterogeneity of fish assemblage of the Pshech. Subhorizon is ecological in character, being caused by some differences in the depth of basin, in which the occurrence of deep-water fishes with photophores (Scopeloides glarisianus A.g., Vinciguerrua obscura D a n i l., *Eomyctophum limicola* Danil.) was possible during the sedimentation of the Amphysile Bed only. It seems, however, that the Planorbella Bed was not deposited in a fairly shallow basin since apart form the Palimphyes genus there occurs here Gephoroberyx robustus (B o g.), close to contemporaneus Gephyroberyx darwini (Johnson) (Daniltschen k o P. G., p. 87). The latter species is a pelagic form, living at depths from 200 to cca. 500 m (Nielsen, 1973). Other fossil genera (Palaeotroctes D a n i l., Protobrotula/D a n i l. /, Holostheus A g.) from the Planorbella Bed, defined by Daniltshenko P. G. (1960) as deepwater ones, cannot be taken into account in estimating the depth of basin, since taxonomical revision in this case is necessary (A r a m b o u r g, 1967; Jerzman^cska, 1979).

On the other hand, very interesting and apparently not comprehensible is the occurrence of *Centriscus heinrichi* (H e c k.) in some deepwater deposits of the Carpathian and Caucasian seas. This species, considered to be a shallow-water form (D a n i l t s h e n k o, 1960), could be able to live also in surface ocean waters (J e r z m a ń s k a, 1968). The first scarce individuals of this species appear in the lower part of the Amphysile Bed and occur abundantly only in the middle (D a n i l t s h e n k o, 1960, p. 77) and upper part of this bed (F e d o t o v, 1976, p. 55). In the Carpathians this species, as well as two others, belonging to the *Centriscus* L. genus, occur only in the middle part of the IPM 1 zone and are very abundant (K o t l a r c z y k, J e r z m a n s k a, 1976). It is evident.



-----



that the lack of *Centriscus heinrichi* in the lowermost part of the IPM 1 zone and in Planorbella Bed could not depend on the depth of basin. In the present authors' opinion, the appearance of this species and its comparatively short duration within the area of the Caucasian and Carpathian basins had to be conditioned by higher temperature of surface waters in this period. Such interpretation is consistent with warming episods between 35 and 32 m.y. B.P., postulated by H a q et al. (1977).

Besides, on the ground of available data, it is not clear why in the Amphysile Bed there occur several genera which are known in the Carpathians only in the upper bathypelagic assemblage. They are represented by: Argyropelecus cosmovicii Cosm. and Pauca, Eomyclophum menneri Danil., Eomyclophum koraense Danil., Bregmaceros filamentosus (Priem.). In the case of Argyropelecus cosmovicii species, known only from one specimen of old Grossheim collection (Daniltshenko, 1960, p. 32), the possibility of erroneous localization of sampling is not excluded. The occurrence of the latter taxa can be explained by their earlier appearance in the Caucasian Basin than in the Carpathian one. Another possible explanation consists in admitting that the shallowing of the former basin took place later i.e. in the period when fish assemblage known from the upper bathypelagic assemblage already started to develop. However, the estimation of vertical ranges of these genera in the Caucasus and in the Carpathians calls for further studies.

2. Distinct correlation concerning both the composition of taxa and ecological character of assemblages is observed when comparing the IPM 2 zone with the Miatlin-Mucidakal Horizon. Even in the very poor in fish remnants Morozkin-Balka Subhorizon, the presence of shallowwater genus *Hipposyngnatus* D an il., common to both Carpathians and Caucasus, was noted.

3. The appearance of *Merluccius inferus* D a n i l. in the upper part of the Miatlin-Mucidakal Horizon is connected in this part of the profile with the IPM 3 zone of the Carpathians, where we note the first occurrence of this genus.

4. Lack of deep-water fishes with photophores in the Riki and Zuramakent horizons renders difficult their parallelization with the zones of upper bathypelagic assemblage. However, the estimation of representatives of the *Palaeomolva* D a n i l. Gadidae genus and of pelagic *Pseudotetrapturus* D a n i l. (Palaeorhynchidae) and *Echeneis* L. (Echeneidae) genera in the IPM 5 and IPM 6 zones (J e r z m a n s k a — nonpublished data) allows to compare these beds with the Riki and Zuramakent horizons. Besides, this conclusion is consistent with mass appearance of drifting assemblage of brown algae and associated mass occurrence of shallow-water fishes of the genus *Syngnathus* L. both in the Carpathians (J e r z m a ń s k a, K o t l a r c z y k, 1976a) and in the Caucasus (H e k k e r, M e r k l i n, 1946). It should also be noted that the appearance of the genus *Echeneis* L. in both the basins can be connected with Late Oligocene warming of oceanic surface waters, which begun 28 m.y. B.P. (H a q et al., 1977).

The differences in the succession of ecological fish assemblages in the area under consideration can be explained by diversely proceeding changes of depth in various parts of the Tethian Basin. Therefore, it is no use to accept the thesis of D an ilt shenko (1960) and F e d otov (1976) on the variation of depth of the upper boundary of  $H_2S$ saturated zone of sea-water.

At the beginning of the period in question, the deepest parts of the basin were situated in western part i.e. in the Carpathians. This deepening moved afterwards toward the east, and during the sedimentation of the upper part of the IPM 1 zone, the depth of the basin was the same in the whole region under consideration. Later shallowing of the basin was, most probably, simultaneous in the Carpathians and the Caucasus. In the initial stage of this process, the Caucasian Basin waters were subjected to a freshening process (Polibin and Morozkin Balka subhorizons -Veselov, 1979; Veselov, Luleva, 1980). Subsequent return to normal salinity is marked by the appearance of neritic-sublittoral fish assemblage in the whole basin. Repeated considerable deepening of the Carpathian Basin, which resulted in the appearance of the upper bathypelagic assemblage, did not reach the region of the Caucasus. Though in the latter region there was some deepening marked by the Riki and Zuramakent horizons, the increasing depth was not sufficient for the development of bathypelagic fishes. Such conditions started to govern in the Caucasus region but later in the Tarkhan Horizon, in which bathypelagic forms appear (Daniltshenko, 1960).

The above-presented tentative parallelization of the Caucasian and the Carpathian fish assemblages (mainly pelagic) allows us to accept some definite stratigraphic conclusions.

1) The lower boundary of the Menilite Beds corresponds in age to that boundary of the Pshech Subhorizon.

2) Lattorfian age of the IPM 1 zone suggests the same age of the Pshech Subhorizon. Both conclusions are consistent with the opinions of the Soviet geologists (e.g. Veselov, 1979).

3) The age of both the IPM 2 zone and of the Polibin Subhorizon cannot be determined. Some premises from the Carpathian region indicate that the beginning of shallowing should not be younger than the nannoplankton NP-22 zone in the Martini zonation (J e r z m a n s k a, K o t l a r c z y k, 1981). Taking into account the data from the Caucasus (V e s e l o v, L u l e v a, 1980) it should be dated as the NP-23 zone. These results are not contradictory if we assume gradual migration of shallowing toward the east.

4) The correlation of Ichthyofauna of the Riki and Zuramakent horizons with that of the IPM 5 and IPM 6 zones suggests Upper Oligocene or Egerian age of both Caucasus horizons. This conclusion is closer to the opinion of these authors who assign to the Miocene only the latter horizon (D a n i l t s h e n k o, 1960, F e d o t o v, 1976) than that of V e s e l o v (1979) who considers both horizons to be Miocene in age. Because of lack of convincing paleontological data for the above mentioned Maikop sequence, our estimation, based on Ichthyofaunal data, does not contradict with any facts known till now.

196

7

The presented parallelization and stratigraphic conclusions should be considered as preliminary proposal and presentation of the problem. Its proper and definite solution will be possible only on the ground of more detailed studies in both regions under consideration.

## REFERENCES

- Arambourg C. (1967) Les Poissons oligocenes de l'Iran. Resultats scientifiques de la mission C. Arambourg en Syrie et en Iran (1938-1939). II. Notes et Mémoires sur le Moyent-Orient. Mus. Nal. Hist. Natur., 8:11-247.
- Brzobohat ý R. (1981) Izolovaně rybi zbytky z menilitových vrstev ždánické jednotky na Morave . Zemni plyn a nafta. 26 (1) : 79-87.
- Daniltshenko P. G. (1960) Kostistye ryby maikopskich otloženij Kavkaza. Trudy Paleont. Inst. AN SSSR 78;3-207.
  - Endelman L. G. (1977) Katalog originalov. Kostistye ryby (Teleostei). Akademia Nauk SSSR Paleontolog. Inst. Moskva, : 3-78.
- Fedotov V. F. (1976) Treskovye paleogen-neogenovych otlozenij SSSR. Trudy Paleont. Inst. AN SSSR, 157:5-72.
- Hag B. U., Premoli-Silva I., Lohmann G. D. (1977) Calcareous plankton paleobiogeographic evidence for major climatic fluctuations in the Early Cenozoic Atlantic Ocean. Jour, Geophys. Res., 92 (27): 3861-3876.
- Hekker R. F., Merklin P. L. (1946) Ob osobennostjach zachoronenija ryb v maikopskich glinistych slancach Severnoj Osetii. Izv. AN SSSR, ser. biol. nauk, 6:647-670.
- Jafarova J. D. (1964) Clupeidae i Gadidae iz maikopskich otloženij Šemachinskogo raiona. Izv. AN ASSR, ser. geologo-geograf. nauk, 4:11-19.
  - (1966) Kambuly v otloženijach maikopskoi serii Apšeronskogo poluostrov a. Dokl. AN ASSR, 22 (5): 73-76.
- Jerzmańska A. (1968) Ichtyofaune des couches à Ménilite (Flysch des Karpathes). Acta Pal. Pol. 13(3): 379-488.
  - (1979) Oligocene alepocephaloid fishes from the Polish Carpathians. Acta Pal. Pol. 24 (1): 65 - 76.
  - Kotlarczyk J. (1976) The beginnings of the sargasso-assemblage in the Tethys?. Palaeogeogr., Palaeoclim., Palaeoecolog., 20: 297-306.
  - Kotlarczyk J. (1981) Zmiany ewolucyjne ichtiofauny jako podstawa stratygrafii serii menilitowo-krośnicńskiej. Zemni plyn a nafta, 26(1): 63-74.
- Kotlarczyk J., Jerzmańska A. (1976) Biostratigraphy of Menilite Beds of Skole Unit from the Polish Flysch Carpathians. Bull. Acad. Pol. Scien. ser. scien. de la Terre, 24(1):55-62.
  - Jerzmańska A. (1977) Proekt stratigrafičeskogo razčlenenija menilitovo-krosnenskoj serii Karpat na ichtyofaunističeskie zony. Mater. XI Kongr. Karp.-Balk. Geolog. Assoc. Kiev: 51-52.
  - Jerzmańska A. (1980) Prockt stratigraficeskogo razdenenija menilitovo-krosnenskoj serii Karpat na ichtyofaunisticeskie zony. Mater. XI Kongr. Karp. - Balk. Geolog. Assoc. Stratigrafija, Kiev: 107-115.
- Nielsen J. (1973) Trachichthyidae. in : Hureau J. C., Monod Th., Chock-list of the fishes of the north-eastern Atlantic and of the Mediterranean 1. Unesco Paris : 340-341.

8

198

- Veselov A. A. (1979) To the accurate definition of the stratigraphical correlation of the Oligocene-Lower Miocene Border – Marking horizons of the Eastern and Central Paratethys. Ann. Geol. Pays Hellén. VII Congr. CUNS, Athen, 2: 1243-1252.
  - Luleva S. A. (1980) Vozrast polibinskogo gorizonta Oligocena yuga SSSR. Izv. AN SSSR. ser. geol., 11:67-71.

#### QUESTIONS

T. Nalbant. It is very difficult to make a comparison between two or more paleogeographical regions if the most, if not all, taxa are not identified at the correct generic and specific level. For instance, you mention only the genera *Alosa* in your list. In my opinion, the majority of species referred by authors (Cosmovici, Paucă, a.o.) to the genera *Clupea* and *Alosa* does not belong to these genera but to other genera, still undescribed. Think that some of them are possibly closely related to the actual genera *Clupeonella*, *Harengula*, rather than to the actual *Clupea* and *Alosa*. Perhaps only a few large specimens appear to be true *Alosa* on the basis of skull bones, vertebral number, fine ray formula, etc. I have examined a large number of remains from the Carpathian Oligocene (Romania) and I have found a very few specimens which can be included in *Clupea* or *Alosa*. Therefore the fossil shads need a careful revision on a worldwide basis. On the other hand, I suspect that the remains actually included in the modern genus *Serranus* represent another error. I hope that a true cooperation between all ichthyologists and paleoichthyologists will solve these problems.

Answer: In an article of this length we cannot discuss the present state of taxonomic knowledge of fossil Teleostei from the Carpathians and the Caucasus. However, some families have been discussed elsewhere (for instance J er z m a n s k a 1967, 1968, 1979). I would like to inform you that my fellow-worker Dr. W. S z y m c z y k has been working on osteology and taxonomy of the Paleogene clupeids and myctophids. She is visiting the American Museum of Natural History in New York where she will compare the osteology of fossil and living fishes of these two families. After her studies some taxonomical changes will be inevitable.

Nevertheless, the great resemblance between the fossil fish assemblages from the Carpathians and the Caucasus is very remarkable even on the basis of the present knowledge of the two ichthyofaunas. This resemblance concerns the temporal span of many taxa in the continuous stratigraphic sections, as well. It seems to me that your observation on the fossil clupeids from Romania agrees with the geological range of the Alosa. As far as I know the major part of paleoichthyological collections in Bucharest consists of fishes found in the middle of the Menilite Beds where the genus Alosa has been unknown.

Referring to the Serranus, I would like to emphasize that Serranus budensis from the Carpathians and the Caucasus may belong to another genus. According to O b e r h l o v a (1975) this species differs from the living genus Serranus in some osteological characters. In spite of the fact that I have a large collection of S. budensis, I cannot concentrate on this taxonomical problem because I am now working on a detailed osteological and taxonomical analysis of other families (Sternoptychidae, Echeneidae, Trachichthyidac).

It is hoped that our tentative correlation will stimulate a more intensive study of both those regions and international cooperation among paleoichthyologist as well.

# THE KISCELLIAN STAGE (OLIGOCENE). FACIOSTRATOTYPES AT NOSZVAJ (BÜKK MOUNTAINS, HUNGARY)¹

BY

#### MIKLÓS KÁZMÉR², PÉTER VARGA²

## The Kiscellian Stage

The Oligocene stages (Lattorfian, Rupelian and Chattian) have been set up in Western Europe. Their stratotype faunas belong to the Boreal bioprovince, therefore their correlation with the Oligocene faunas in the Carpathian Basin brings up several problems. According to B á l d i, (1980) the latter contain much Mediterranean and Indopacific elements. The southern connections and partial endemism of the faunas make the introduction of regional stages inevitable. It is to be hoped that the new stages will be correlated with Western European (Boreal), Mediterranean and other ones in due course.

The necessity for regional stages in the Miocene had been realized in the 1950s. The Regional Committee on Mediterranean Neogene Stratigraphy then established them for the Central Paratethys and the stages have been described in the volumes of the series "Chronostratigraphie und Neostratotypen".

The first regional Oligocene stage, the Egerian, has been established and described in connection with the work on Miocene stages (B á l d i, S e n e š, 1975). A new stage, Kiscellian (pronounced as kesh-tzall-ian) corresponding to "Lattorfian" (sensu M a r t i n i, 1969) plus Rupelian has been suggested in an early paper of B á l d i (1966). This proposal was renewed in an official form at the Mediterranean Neogene Congress in Athens (B á l d i, 1979a).

The essence of his proposition is as follows: As the Paratethys has been separated from the Tethys in early Oligocene time (B á l d i, 1980) it is reasonable to introduce the stage Kiscellian for Lower and Middle

² Department of Geology, Eötvös University, H-1088 Budapest, Múzeum körůt 4/a, Hungary.



¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981 September 8 - 13, Bucharest, Romania.

Oligocene strata. The indefiniteness of the stratigraphic position of the Boreal Oligocene stages, especially of the Lattorfian (either if it belongs to the Oligocene or to the Eocene or rather to both series as a transitional stage), makes the introduction of Kiscellian a living question. This stage represents the interval between Priabonian and Egerian. Its lower boundary coincides with the Eocene-Oligocene boundary.

B á l d i (1979 a) designated a provisional stratotype for the Kiscellian. The drilling R-8/3 in Budapest contains the lower boundary of the new stage close to the bottom of the Tard Clay Formation. The upper boundary of Kiscellian is defined by the lower boundary of Egerian, at the type locality in Eger.

## Faciostratotypes of the Kiscellian Stage

SIKFOKÚT-quarry at Noszvaj, 10 km to the east of Eger, Northern Hungary (Fig. 1). The lowermost strata of the Kiscellian Stage are exposed in the quarry and in the nearby ravines.



Fig. 1. - Geological map of Noszvaj.

1, Triassic dolomite; 2, Eocene terrestrial conglomerate; 3, Upper Eocene nummulitic limestone and marl; 4, Lower-Middle Oligocene Kiscell Clay Formation; 6, Lower Miocene terrestrial gravel; 7, Lower Miocene rhyolite tuff.

The underlying limestone, calcareous marl and marly beds are characterised by Nummulites fabianii Prever, N. incrassatus dela Harpe, Spiroclypeus carpaticus (Uhlig), S. granulosus Boussac, Grzybowskaia multifida Bieda and G. reticulata (Rütimeyer) (see

Institutul Geologic al României

200

Zilahy, 1967). The Upper Eccene, Priabonian age of the sediments is proved.

The alternating white marl and yellow-green, glauconitic limestone beds (Fig. 3) of the Sikfökut-quarry lie conformably on the Priabonian



limestone. The topmost layer of the section is Lower Miocene gravel lying unconformably on the Kiscellian.

The prevailing marly sequence contains 20-80 cm thick allodapic limestone beds (Meischner, 1964). The sedimentological features of the allodapic beds at Sikfökut are, as follows:

- sharp contact between marl and limestone at the bottom of the limestone beds;

- transitional contact between limestone and marly beds at the top of the limestone beds;
- limestone beds containing marly pebbles (occasionally several centimeters in diameter) ripped from the marly substrate;

- the limestone beds consist of well-sorted, well-rounded microbioclastic grains, less than 1 mm in diameter : fragments of corallinacean algas, echinoids, nummulitids and other foraminifers, bryozoans, molluscs and worm tubes, altogether shallow sublittoral faunal elements;



Fig. 3. - Profile of the Sikfökút-quarry.
a, sandy, calcareous marl;
b, marl; c, allodapic limestone bed; d, marl;
e, allodapic bed; f, marl;
g, allodapic bed; h, fine sand; i, tuffitic white marl; j, allodapic limestone; k, marl; 1, Miocene gravel.

— in contradiction to the fauna of the limestone beds, the white marl beds contain a deep sublittoral — shallow bathyal foraminifer fauna.

The last two points are especially characteristic of allodapic limestones, i.e. the alternation of beds containing shallow-water and deeper water fauna.

Some loose layers in the allodapic beds contain a Nummulites fauna of little diversity. It is predominated by Nummulites incrassatus de la H ar p e, but N. budensis H an k t en and N. bouillei d e la H ar p e occur, too. All of the three species are characteristic of the Upper Eocene formations, but their taxon-range-zones extend beyond the Eocene-Oligocene boundary. On the other hand, the conspicuous absence of Nummulites fabianii P r e v e r — whose presence is widespread in the Upper Eocene of the Bükk Mts — indicates Early Oligocene age.

The lower marly layers of the Sikfökůt-quarry contain a Bolivina —Globigerina association (M. Horváth, personal communication). The characteristic species are Bolivina antegressa, Bulimina sculptilis, B. truncana, Uvigerina eocaena and Globigerina eocaena. This association is probably of early Kiscellian age.



Institutul Geologic al României

The upper marly beds in the quarry contain a Bulimina sculptilis — Uvigerina eocaena association which must belong to the Lower Kiscellian.

The nannoflora of the upper marly beds has been examined by A. Nagymarosy (personal communication). These beds belong to the NP 21 - 22 (Ericsonia subdisticha - Helicopontosphaera reticulata) zone (sensu Martini), i.e. to the Lower Oligocene.

To summarize the results, on the basis of small foraminifera and nannoplankton investigations (*Nummulites* examinations could not indicate the definite position of the beds), the limy-marly sequence of the Sikfökut-quarry is of Oligocene age and belongs to the Kiscellian Stage.

We intend to mark out the Sikfőkút-quarry for one of the faciostratotypes (and possibly for a boundary stratotype) of the Kiscellian Stage, as it provides possibility for biostratigraphical correlation between shallow- and deeper-water sediments. As the excavation work continues it is very likely to find the lower boundary of the Kiscellian stage, which coincides with the Eocene-Oligocene boundary of worldwide importance.

The other faciostratotype of the Kiscellian lies in the northern slope of Nagyimány hill at Noszvaj (Fig. 1). The Kiscell Clay Formation exposed at this locality contains gravel beds (Fig. 4). Earlier authors (S c h r ét e r, 1939) have not realized that this sequence violates Walther's Law; they considered it as an interfingering of the Kiscell Clay and Hárshegy Sandstone formations.

The Kiscell Clay at Noszvaj (see Fig. 2) slightly differs from that of the locus typicus in Budapest; it is rather clayey silt (Fig. 4a and e), which contains coarse sand, gravel (b) and conglomerate beds (f). The sand displays graded bedding and contains shallow marine Pectinidae (b). The c clay layer contains double valves of *Saxolucina* sp., embedded in life position. This layer is overlain by a clay bed with centimeter-size, isolated quartzite pebbles (d). This sedimentological feature is the pebbly mudstone of C r o w e 11 (1957). The following bed is typical Kiscell Clay(e).

The most important feature of the Nagymány section is the repetition of the above sequence. The second rhythm begins with a coarse clastic (sandy conglomerate) bed (f), which contains angular pebbles of the Kiscell Clay; then follows pebbly mudstone again (q). Here the layer with saxolucinas is missing. The topmost bed (h) of the exposure is coarse sand again : it is the basal layer of the next rhythm.

Báldi (1979 b) recognised that the two rhythms establish an excellent example of fluxoturbidite, defined by Dzulynski ct al. (1959). This sequence exhibits several diagnostic characteristics of turbidites: graded bedding, mud pebbles and resedimented shallow marine fossils. Other features of turbidites, like sole marks and convolute bedding are missing. On the other hand, pebbly mudstone and sandy conglomerate are characteristics of sediment slumping. As a combination of features, characteristic of turbidites and slumping as well, are present in the Nagyimány section, it is considered as fluxo-turbidite.

The Kiscell Clay itself has been deposited in a deep sublittoral environment, as megafauna and foraminifera indicate. The shallow marine molluse fauna of the coarse clastic (sand and conglomerate) beds suffered

transportation from its original habitat to the much deeper basin of the Kiscell Clay.

The Nagyimány section represents the uppermost part of the Kiscellian Stage. The Kiscell Clay contains a very well preserved Amphistegina choctawensis association. Characteristic species are: *Neoeponides* schreibersii (Orbigny), Uvigerina cf. gallowayi Cushman, Asterigerinata falcilocularis (Subbotina), Turborotalia brevispira (Subbotina), T. cf. obesa (Bolli). These species indicate a deep sublittoral environment. On the basis of nannoplankton investigations of A. Nagymarosy (personal communication) the sequence belongs to the NP 24 (Sphenolithus distentus) zone.

Tibor Kecskeméti has helped to determine the *Nummulites* fauna. Mária Horváth has determined small foraminifera and András Nagymarosy has investigated nannoplankton. Prof. Tamás Báldi has directed and supervised our work. Their help is greatly appreciated by the authors.

### REFERENCES

- Báldi T. (1966) Dic oberoligozaene Molluskenfauna von Eger und die Neuuntersuchung der Schichtfolge. Annales hist.-nat. Mus. Nal. Hung. 58, 69 - 101, 2 Abb., 2 Tab., 4 Taf., Budapest.
  - (1979 a) Changes of Mediterranean (? Indopacific) and Boreal influences on Hungarian marine mollusc faunas since Kiscellian until Eggenburgian times; The stage Kiscellian. Ann. Geol. Pays. Hellén., hors serie 1979/1, 39 - 49, 3 figs., Athens.
  - (1979b) Age and History of Oligocene and Lower Miocene Formations in Hungary. Manuscript, 200 p.
  - (1980) The early history of the Paratethys. Földlani Kozlony 110/3-4, 456 472, 7 figs.,
     pl., Budapest.
  - Senes J. (Eds.) (1975) Chronostratigraphic und Neostratotypen, Miozaen der Zentralen Paratethys 5, OM – Egerien. VEDA, Bratislava, 577 p.
- Crowell J. C. (1957) Origin of pebbly mudstones. Bull. Geol. Soc. Amer. 68/8, 993 1010, 11 figs., 4 pls., New York.
- Dzutynski S., Ksiazkiewicz M., Kuenen Ph. H. (1959) Turbidites in flysch of the Polish Carpathian Mountains. Bull. Geol. Soc. Amer. 70/8, 1089-1118. New York.
- Martini E. (1969) Nannoplankton aus dem Latdorf (locus typicus) und weltweite Parallelisierungen im oberen Eozaen und unteren Oligozaen. Senckenbergiana lethaea 50/2-3, 117 - 159, 4 Abb., 4 Taf., Frankfurt.
- Meischner K. D. (1964) Allodapische Kalke, Turbidite in Riff-nahen Sedimentations-Becken. In: Bouma A. H., Brouwer A. (Eds.) Turbidites. Developments in Sedimentology 3, 156 - 191, Elsevier, Amsterdam.
- Schréter Z. (1939) Geologische Verhaeltnisse der SO-lichen Seite des Bükk-Gebirges. Jahresberichte kgl. ung. Geol. Anstalt 1933 – 1935/II., 511 – 532, Budapest.
- Zilahy L. V. (1967) Upper Eocene foraminifera from the region of Felsotárkány (Southwestern Bükk Mts.). Relationes Ann. Inst. Geol. Publ. Hung. of 1965, 393 - 441, 11 pls., Budapest.

#### QUESTIONS

 $K r s ti \bar{c}$ . Tell us some more in fluxoturbidites : width of the area, depth of the sedimentation, etc.

Answer: The Noszvaj Member of the Kiscell Clay Formation is separated by its fluxoturbiditic character. The member lies on the southern flanks of the Bukk Mts, covering an area of several hundreds square kilometres, with a minimal thickness of 100 km. The sand and gravel beds contain hydrocarbons. The paleogeographical situation is the following: a river coming from the north, from among the mountains of the Bukk carried sand and gravel into the Kiscell Sea. Occasionally slumping occurred on the submarine delta fan. The slumping could not develop into a turbidity current because of the relatively shallow (less than 1 km deep) sea. Consequently, an intermediate feature – the fluxoturbidite – came into being, bearing some of the characteristics of a turbidite and some of a slumping. Benthic foraminifers ndicate a sedimentation depth of more than 600 metres (M. H o n á th, pers. comm.).

#### DISCUSSIONS

Em. Kojumdgieva: The stages are separated after their fauna: the regional stages after their regional fauna. The Kiscellian *s.l.* includes three successive faunas (inferior - - marine, middle - with reduced salinity, with *Cardium lipaldi*, superior - marine). That is why we shall have to distinguish three stages, not one.

The Hungarian geologists worked hard and they have the evidence necessary for this division.

A. Rusu: Báldi's interpretation of the Kiscellian in 1979 differs entirely from his initial definition of this stage (Báldi, 1969). Considering Kiscellian the whole interval. between the Priabonian and the Egerian, the author includes here an inferior part-marinewith faunas belonging to the Mediterranean Realm, and a superior part - brackish+marinewith faunas typical of the Trans-European province temporarily isolated.

In our opinion a regional stage would be useful only for the interval including the upperpart of the Tard Clay + Kiscell Clay, an interval during which took place a first isolation of the realm which later on, definitely isolated, become the Paratethys.

# LES COMMUNAUTÉS DE MOLLUSQUES DE L'OLIGOCÈNE DU BASSIN DE LA HAUTE THRACE (BULGARIE MÉRIDIONALE) ET LEUR IMPORTANCE STRATIGRAPHIQUE¹

#### PAR

## EMILIA KOJUMDGIEVA², V. SAPUNDGIEVA³

Le bassin (ou la dépression) de Haute Thrace occupe les parties supérieure et moyenne de la vallée de Maritza (Bulgarie méridionale). Les sédiments oligocènes du bassin débutent par les marnes et les argilites de la formation d'Ezerovo (K o j u m d g i e v a, D r a g o m a n o v, 1979) succédées par les dépôts lacustres, fluviatiles et continentaux des formations de Dragoinovo (K o j u m d g i e v a, D r a g o m a n o v, 1979) et de Maritza (P a n o v, 1962). La faune provient presque entièrement des forages. Nous exprimons notre reconnaissance aux géologues qui ont récolté cette faune — D r a g o m a n o v, B r u n k i n, P a n o v, E v s t a t i e v, L e v s k i, — aussi bien qu'aux géologues défunts M e r k l i n et P o p o v de l'Institut Paléontologique de Moscou.

Les parties inférieures des marnes de la formation d'Ezerovo ne contiennent que des Foraminifères marins d'âge éocène terminal et oligocène inférieur (données non publiées de D i k o v a). En même temps dans les Rhodopes orientales se forment des calcaires marins contenant une riche faune de Foraminifères, Mollusques, Echinides, etc. (B e l m u st a c o v, 1968). Ils faisaient partie du détroit, qui à travers la région de Burgas (B e t o v, D i k o v a, 1969), le bassin de Haute Thrace, les Rhodopes orientales et le bassin de Bas Thrace, reliaient la Paratéthys orientale avec la Téthys.

Les parties moyennes de la formation d'Ezerovo contiennent une communauté de Mollusques à Loxocardium lipoldi (Rolle) et Nucula comta Goldfuss prédominants, accompagnés par Janschinella garetzkii (Merklin) ou Janschinella melitopolitana (Nossovsky) et parfois par des rares Parvicardium scobinula (Merian), Lenticorbula sokolovi slussarevi (Merklin) et Cerastoderma (Bessia) merklini sp. n. L'espèce Nucula comta est commune dans l'Oligocène moyen et supérieur du Bassin

² Bulgarie.



¹ Note présentée au 12ème Congrès de L'Association Géologique Carpatho-Balkanique, 8 - 13 septembre 1981, Bucarest, Roumanie.

du Nord et de la Paratethys, *Parvicardium scobinula* a la même distribution et *Loxocardium lipoldi* est connu dans la Paratethys centrale et fait partie d'une association, qui (au moins en Hongrie) est accompagnée par Nannoplancton de Zone NP-23 (B a l d i, 1980). Les autres membres de l'association (*Janschinella abondantes* et rares *Lenticorbula*) correspondent approximativement à celle de l'horizon Polbinien (= couches molochaniennes = couches à Ostracodes = couches à Ergenica cimlanica) de la Paratethys orientale, contenant aussi Nannoplancton de Zone NP-23 (V e s e l o v, 1979; V e s e l o v, L i u l e v a, 1980).

Le caractère endémique de cette association prouve que pendant l'Oligocène moyen, dans la zone de la Paratéthys, existait déjà un bassin isolé à salinité probablement réduite. Báldi (1979, 1980) propose d'utiliser le nom de la Paratéthys même pour le bassin oligocène, ce qui est raisonable. Le bassin de Haute Thrace en faisait partie, comme golfe profond de la Paratéthys orientale (figure )³. Sa faune endémique révèle que pendant l'Oligocène moyen le détroit reliant la Paratéthys orientale à la Téthys n'existait pas. Les Rhodopes orientales s'étaient élevées et séparaient le bassin de Haute Thrace et de la Téthys.

L'association suivante, à Lenticorbula sokolovi, est très abondante dans les parties supérieures de la formation d'Ezerovo. C'est ici que prédominent Lenticorbula sokolovi sokolovi (K a r l o v) ou Lenticorbula sokolovi slussarevi (M e r k l i n), parfois accompagnées de Parvicardium popovi sp. n., Cerastoderma serogosicum N o s s o v s k y, Cerastoderma chersonensis N o s s o v s k y, Cerastoderma (B e s s i a) pseudosarmaticum pseudosarmaticum sp. n., Peronaea nysti (D e s h a y e s), Siliqua nysti D e s h a y e s, S. asulcata H  $\bar{o}$  l z l, Lenticorbula samodurovi (M e r k l i n), Lenticorbula helmerseni transylvanica (M o i s e s c u), Janschinella garetzkii (M e r k l i n), Janschinella melitopolitana (N o s s o v s k y).

L'association à Lenticorbula sokolovi est voisine de celle de l'horizon sérogosien (= couches morozkiniennes = couches supraostracodes) de l'Ukraine méridionale (N o s s o v s k y, 1962) et de ses analogues dans la région transcaspienne et en Géorgie (M e r k l i n, 1974), ordinairement considérée d'âge oligocène moyen (M e r k l i n, 1964; N o s s o v s k y et P a s i c i n, 1965; M e r k l i n, 1974; V e s e l o v, 1979).

Les horizons polbinien et sérogosien de la Paratethys orientale sont semblables, souvent difficiles à séparer d'après leur faune. A coté de quelques formes boréales euryhalines (Nucula, Peronaea, Siliqua, peut-être Parvicardium et Losocardium) y prédominent les espèces et même les genres endémiques (Janschinella, Lenticorbula, les représentants de Cerastoderma), qui prouvent qu'il s'agit d'un bassin isolé à salinité plus ou moins réduite. On pourrait penser à leur séparation comme étage régional pour la Paratethys orientale (ils ont été nommés de par J i jc e n k o, 1965, 1973, étage Belozérien et par M e r k l i n, 1964, M e rk l i n, 1974, horizon solénovien). Nous nous abstenons pour le moment d'utiliser ces noms afin d'éviter les malentendus.

Les couches à Loxocardium lipoldi d'Hongrie ne correspondent qu'à l'horizon polbinien de la Paratethys orientale. Elles sont recouvertes par les couches kiscelliennes marines, contenant du Nannoplancton de la zone NP-24 (Báldi, 1979, 1980), qui sont, probablement, entièrement ou partiellement synchrones à l'horizon sérogosien. Ce fait montre

que les differences de l'évolution paléogéographique de la Paratéthys centrale et orientale existaient à partir de l'Oligocene. Les argiles kiscelliennes sont d'âge oligocene moyen-rupelien (S t e i n i n g e r et al., 1976).

L'extension stratigraphique des couches à *Lenticorbula* en Transylvanie est objet de discussion (M o i s e s c u, 1972, 1975, 1977; R u s u, 1972, 1977), mais est nettement plus grande que celle des couches à *Loxocar*-

			E	Iongrie	Haute Thrace	Paratéthys Orientale couches ascaniennes ou bai- gubekiennes à Lenticorbula helmerseni (marines)			
OCÈNE	supérieur	NP-25	Eg (m	gerien Jarin)	ass. à Polymesoda convexa brongniarti (salinité basse) ass. à Lent. helmer- seni (sal. réduite)				
	moyen	NP-24	co ce	uches de Kis- ll (marinesi)	ass. à Lenlicorbula sokolovi (salin. réduite)	horizon serogosien (sal. reduite)			
OLIG		NP-23	de Tard	ass. à Lox lipoldi (sal. rcd.)	ass. à Lox lipoldi et Nucula comta (salin. réduite)	horizon polbinien (sal. réduite)			
	inférieur	NP-21/22	couches (	Foramini- feres marins	Foraminifêres marins				

TABLEAU

dium lipoldi d'Hongrie et probablement correspond aux horizons polbien et sérogosien.

La partie occidentale du bassin de Haute Thrace (arr. de Plovdiv) est dépourvue des associations de Mollusques plus récents que celle à *Lenticorbula sokolovi*, mais en Maritza-ouest on rencontre au-dessus de la dernière, dans les parties terminales de la formation d'Ezerovo, une association à *Lenticorbula helmerseni helmerseni* (M i k h a i l o v s k y). On rencontre aussi *Cerastoderma (Bessia) pseudosarmaticum pizensis* ssp. n., *Abra bosqueti* (S e m p e r). L'espèce *Lenticorbula helmerseni* est connue dans les couches baygubekiennes (Oligocène supérieur marin) de la région transcaspienne (M e r k l i n, 1964, M e r k l i n, 1974), mais préfère les faciès à salinité réduite. L'association bulgare est composée des formes euryhalines et avait habité un bassin à salinité réduite, mais d'âge oligocène supérieur.

Les trois associations citées avaient habitées des eaux à salinité réduite (probablement brachyhalines) parce que les formes marines euryhalines sont constamment présentes. Toutes les trois sont accompagnées d'ostracodes abondantes, mais pas encore étudiées taxonomiquement.

Une autre association, composée des formes saumâtres et dulcicoles à prédominance de *Polymesoda (Pseudocyrena) convexa brogniarti* (B a sterot), est rencontrée alternant avec celle à *Lenticorbula helmerseni* 

14 — c. 50



E. KOJUMDGIEVA, V. SAPUNDGIEVA

dans les parties terminales de la formation d'Ezerovo et rarement dans les parties basales de la formation de Maritza. Outre l'espèce dominante apparaissent également Congeria (Mytilopsis) kochi Andrusov, Congeria (Andrussoviconcha) euchroma (Oppenheim), Theodoxus (Calvertia) crenulatus Klein, Melanopsis (Lyrcaea) impressa hantkeni Hofmann. L'association (surtout la dernière espèce) est d'âge oligocène supérieur (confirmée par sa position stratigraphique) et habitait des eaux douces ou très adoucies.

Les associations bulgares et leur corrélation avec les associations d'Hongrie et de la Paratéthys orientale sont résumées dans le tableau. La subdivision de l'Oligocène en inférieur, moyen et supérieur est préliminaire, parce qu'il n'existe pas un schéma universellement reconnu et même ses limites inférieure et supérieure sont discutables. La corrélation (quoique indirecte) avec les zoues nannoplanctoniques va permettre de trouver la place des sédiments saumâtres de la Paratéthys dans un schéma global futur.

³ La figure-texte n'a pas été remise à la rédaction.

## BIBLIOGRAPHIE

- Báldi T. (1979) Changes of Mediterranean (? Indopacific) and boreal influences on Hungarian marine Molluscfaunas since Kiscellian until Eggenburgian times : the stage Kiscellian. Ann. Geol. Pays. Hellen., hors série, I, 39 – 49.
  - (1980) A korai Paratethys tortenete. Foldt. Kozl., 110, 3 4, 456 472.
- Merklin R.L. (1964) Sur la stratigraphie de l'Oligocène moyen et supérieur dans la Sud de l'USSR. Mem. Bureau rech. géol. min., Paris, 28, II, 771 776.
- Moisescu V. (1972) Mollusques et Echinides stampiens et égériens de la région de Cluj-Huedin-Romanași (Nord-Ouest de la Transylvanie). Mem. Inst. Géol. XVI, 152 p., 37 pl. București.
  - (1975) Stratigrafia depozitelor paleogene şi miocen-inferioare din regiunea Cluj
     Huedin-Românaşi (NW-ul bazinului Transilvaniei). Ann. Inst. geol. geofiz., XLVII,
     5 211, pl. I XXIV, Bucureşti.
  - (1977) Biostratigrafia și corelarea depozitelor oligocene din regiunea Cluj (Transilvania de NW). D.S. Inst. geol., geofiz. LXIV/4, 217 - 281, București.
- Rusu A. (1972) Semnalarea unui nivel cu Nucula comta în bazinul Transilvaniei și implicațiile lui stratigrafice. D.S. Inst. geol., 58, 4, 265 – 282, București.
  - (1977) Stratigrafia depozitelor oligocene din nord-vestul Transilvaniei (regiunea Treznea – Hida – Poiana Blenchii). Ann. Inst. geol. geofiz., LI, 69 – 223, pl. I – XXXI, București.
- Steininger F., Rögl F., Martini E. (1976) Current Oligocene/Miocene biostratigrafic concept of the Central Paratethys (Middle Europe). Newsl. Stratigr., 4, 3, 174 – - 202.
- Veselov A. A. (1979) To the accurate definition of the stratigrafical correlation of the Oligocene-Lower Miocene border-marking horizons of the Eastern and Central Paratethys. Ann. geol. Pays. Hellen., hors serie, III, 1243 - 1252.

210

Белмустаков Ем. (1968) Палсоген. Стратиграфия на България, С., 309-340. Бецов М., Дикова П. (1969) Върху присъствието на олигоцен в района межде Бургас и Поморие. Сп. Бълг. геол. друж., 30, 3, 346-351.

- Веселов А. А., Люльева С. А. (1980) Возраст полбинского горизонта олнгоцена юга СССР. Изе. АН СССР, сер. геол., 11, 67-71.
- Жижченко Б. П. (1965) Принципы страгиграфии кайнозойских отложений. XXII Межд. геол. конгресс, докл. сов. геологов, Проблемы стратиграфии кайнозоя, 20-29.
- (1973) Палеогеографические методы стратиграфии. Бюлл. Моск. общ. испыт. природы, отд. геол., 48, 5, 45-54.
- Коюмджиева Е., Драгоманов Л. (1979) Литостратиграфия на олигоценски и неогенски седименти от Пловдивско и Пзарджишко. Налеонт., стратигр. и литол., 11, 49-61.
- Мерклин Р. Л. (1974) Определитель двустворчатых моллюсков олигоцена юга СССР. М., 189 стр., 54 табл.
- Носовский М. Ф. (1962) Пластинчатожаберные корбулевых слоев олигоцена Причерноморской впалины. Палеонт. жур., 3, 29-39, табл. В.
- Пасичний Г. В. (1965) Про погранични верстви олигочен-миоцену в Причорноморський запалини. Геол. журн., Киев, 36-44.
- Панов Г. (1962) Горнотракийският тектонски ров по ланни от опорните сонлажи. в Южна България. Тр. геол. Блг., сер. страт. и тект., 4, 155-174.

#### DISCUSSIONS

M. Nosovsky: La découverte dans le bassin thrace supérieur de la faune saumâtre, dans les couches de Serogaz à éléments sténohaliniens de la faune de mollusques ne doit pas nous étonner, yu que des facteurs analogues existent aussi dans la région euxino-caspienne, à savoir : dans le Caucase du Nord (sur le ruisseau Trandon), à Engheneh et dans le sud de l'Ukraine (arrondissement Anostolovsk et couches de Serogaz Glycimeris pilosus). Cet état de choses est bien intéressant.

L'unification des couches de Polbinsk (Maloceansk) et de Serogaz en un seul étage est possible, mais si on redige des cartes geologiques, il faut que ces couches soient étudiées à part.

P. Stevanović. L'auteur prend en consideration la définition initiale de la Paratethys (Laskarev, 1924). Il envisage que, ce bassin s'est forme jusqu'au moment de la phase savienne. Quelles sont les limites entre la Téthys et la Paratethys? L'extrémité du bassin est, par exemple, l'Oligocène de la Thrace, le graben de Rainsk, de la Macédoine, etc. Généralement, la délimitation de ces deux bassins est, selon notre opinion, encore confuse. En ce qui concerne le présent article, je peux dire qu'il soulève bien des questions ; leur réponse, je le pense, est prématurée.

E. Kojumdgieva. Dans la Téthys (en Espagne), la faune ruscinienne continue de vivre en Piacencien inférieur. Probablement, le changement de la faune mammalienne n'est. pas synchrone; en Roumanie elle est arrivée plus tôt que dans la région méditerranéenne.



Institutul Geologic al României

## THE PALEOCENE-EOCENE IN THE SOUTH-WEST OF THE MOESIAN PLATFORM (ROMANIA)¹

ΒY

#### MIRCEA LEU², STEFAN GARTNER², IOAN COSTEA²

## Introduction

After 1952, while discovering certain significant hydrocarbon deposits on the Romanian territory of the Moesian Platform, the above-mentioned structural unit became of a prime economic concern and a whole set of complex geological works have been carried out all over it. Out of these, the drilling works contributed to better knowing the stratigraphy and tectonics of this unit, as its geological structure is wrapped into a loess cover.

Biostratigraphical, especially micropaleontological studies have been achieved together with the drilling works. Thus, in the south-west of this unit, south of Craiova (Figure), underlying the Badenian deposits, within the crossed marl and marly-limestone packages, the presence of the Eocene has been revealed. Initially, microfaunistic and palyno analyses indicated the Upper Eocene (C o s t e a, B a l t e s, 1962), then the microfauna pointed to the Middle-Upper Eocene, as well (C o m s a, C o s t e a, 1966).

Meanwhile, the oil wells disclosed the presence of the Paleogene in further drillings and made it possible the outlining of its distribution area. In order to shape a clear-cut image on the Moesian Platform stratigraphy and paleogeographic history during the Paleogene, calcareous nannoplankton study has been resorted to, applied both to the initial samples and to those collected subsequently.

## Stratigraphic Considerations

The Paleogene calcareous nannoplankton study in the south-west of the Moesian Platform relies on the analysis of 17 samples. These have been prepared in the laboratories of the Oil and Gas Research and Design

¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981 September 8 – 13, Bucharest, Romania.

² Ministry of Petroleum, Bucharest, Romania.

³ Texas A & M University, College Station. Dept. of Oceanography, Texas 77843, U.S.A.

M. LEU et al.

2

Institute, Bucharest, and, part of them, at College Station, Texas A & M University, U.S.A. (1977). The analyzed material has been included in a lithologic column, achieved due to the electric log correlation of the wells collecting the samples in question (Plate).

After studying the nannoplankton content, the analyzed samples have proved to include rich calcareous nannofossil associations. The



Detail sketch with the location of the wells with investigated samples (left). Sketch map including the investigated area (right).

oldest elements — relatively scarce — are of a Lower Cretaceous age. More frequent are the Upper Cretaceous nannofossils, present in variable amounts in each sample, in certain cases reaching half of the number of species composing the encountered associations. Paleogene reworked coccoliths have also been witnessed for the younger associations within the same stage.

For calcareous nannofossil zones distribution and correlation, D. Bukry's (1978) standard zonation has been employed, as considered more recent and detailed than E. Martini's zonation (1971).

The lithofacies and the nannofossil content in the investigated samples from the south-western part of the Moesian Platform, presented for each well in Plate, are the following :

- Well 27 Dobrotești, depth 275 m. The sample is a grey-light greenish-marly-limestone, containing an extremely rich association of reworked Cretaceous calcareous nannofossils, accompanied by Paleocene species of low frequency. The association is likely to characterize the Discoaster multiradiatus Zone, the Chiasmolithus bidens subzone, B u k r y (1978), i.e. NP9 and is mostly represented by small, primitive specimens. The Paleocene species typical of this interval are lacking, the association being dominated by small and medium size forms of the Coccolithus pelagicus group.

214

- Institutul Geologic al României

The microfossil preservation is quite the same for the Cretaceous reworked species and for the Paleocene indigenous ones. The age of the determined association is Upper Paleocene.

- The samples in the wells 1401 Bratovoești, depth 398 m and 106 Bratovoești, depth 350 m are represented by grey-greenish marls and contain an association in which both *Discoasteroides araneus* and *Rhomboaster calcitrapa* are present. This association could be correlated to G a r t n e r's (1970), specific to the Upper Paleocene of the Blake Plateau Region, in a portion assigned to the upper part of the Discoaster multiradiatus Zone. These samples are, highly probably, belonging to an interval below the Paleocene-Eocene boundary.

The described zone has been called Upper Discoaster multiradiatus, correlates to the zone bearing the same name in Bukry's standard zonation (1978), the Campylosphaera eodela subzone, i.e. the upper part of E. Martini's NP 9 Zone (1971) and corresponds to the uppermost Paleocene.

- The samples in the wells 4 Teascu, depth 403 m and 1401 Bratovoesti, depth 375 m, are represented by fairly calcareous, light grey marls with slight yellowish shades. They include a Paleocene and Lower Eocene nannofossil association, next to Upper Cretaceous forms.

This association integrates into the Tribrachiatus contortus subzone, is the base of the Discoaster diastypus Zone in D. Bukry's zonation (1978), i.e. the NP10 Zone (Martini, 1971), and corresponds to the lowermost Eocene.

The assignment of the Lower Eocene age relies on the presence of the species Discoaster diastypus, Chiasmolithus eograndis and of the complex Tribrachiatus contortus-Tribrachiatus bramlettei, dominated by Tribrachiatus contortus. The lack of the Discoaster binodosus, Discoaster lodoensis, Chiasmolithus grandis and Sphenolithus radians specimens equally pleads for assigning the above-mentioned age.

- In the wells 1400 Bratovoesti, depth 400 m, 1401 Bratovoesti, depth 348 m and 62 Segarcea 500 m, the samples are lithologically represented by fairly calcareous, light grey, compact, slightly micaferous marls, with pale greenish shades. They contain a nannofossil association dominated by Lower Eocene species, but where reworked Paleocene and Cretaceous elements are also found. Most specimens are of small or middle size, as the big-sized ones occur only in restricted number. Almost all specimens, especially the large ones, are degraded in a manner which suggests mechanical breakage rather than chemical action. The coccoliths preservation state indicates either transport, or diagenetic effects, such as the water action upon the test borders or the calcite precipitation over the nannofossil surface. The content of the association places the described samples in the Discoaster binodosus subzone, namely in the uppermost Discoaster diastypus Zone in D. Bukry's standard zonation (1978) (Martini's NP11 Zone-1971) and defines the Lower Eocene. The assignment of this age is based on the presence of the specimens Tribrachiatus orthostylus, Chiasmolithus eograndis and Discoaster binodosus and on the absence of the species Discoaster lodoensis and Chiasmolithus grandis.

Conformably overlying the above-described deposits, there comes the grey, slightly sandy, finely micaceous marl with slight olive shades, in the well 106 Bratovoesti, depth 256 m. The sample contains a nannoplankton association with comparatively few older, reworked forms. Fossil preservation is generally good, although certain mechanical alterations are visible, as in the case of the delicate Discoaster lodoensis. The encountered association belongs to the Tribrachiatus orthostylus Zone, bearing the same name in D. Bukry's zonation (1971), and corresponds to the Lower Eocene. The stratigraphic location of the sample in the well 106 Bratovoesti, depth 256 m has taken into account the simultaneous occurrence of the species Discoaster lodoensis, Tribrachiatus orthostylus, as well as the absence of any Helicosphaera specimens and of the species Discoaster sublodoensis, Nannotetrina quadrata, etc., characteristic of the Middle Eocene, or of younger deposits. The presence of the specimens Sphenolithus radians and Chiasmolithus grandis support the assignment of this age as the most appropriate.

- In the well 1401 Bratovoești, depth 323 m, there has been encountered a grey, compact marl with greenish shades, breaking irregularly, with fine fragments of degraded macrofauna. Its nannoplankton content is extremely rich, prevailing in the species *Chiasmolithus gigas*, *Discoasteroides kuepperi*, *Discoaster sublodoensis*. The presence of these species, as well as that of Discoaster barbadiensis and Neococcolithes dubius allows the assertion that the association belongs to the *Chiasmolithus gigas*, i.e. the Nannotetrina quadrata Zone in D. Bu k r y 's zonation (1978), the NP15 Zone, respectively (M a r t i n i, 1971), and feature the Eocene.

Overlying these deposits, there is a grey-violet, compact, slightly sandy marl with grey-whitish marly enclaves, with fine micaceous spangles.

The sample contains a peculiar rich nannofossil association, out of which Discoaster distinctus, Lanternithus minutus, Discoaster tani nodifer are worth mentioning. Most forms in this sample are related to Nannotetrina quadrata, a species which lends its name to the zone the association is part of. The latter is located in the Coccolithus staurion subzone, in D. Bukry's standard zonation (1978), i.e. the Upper NP15 Zone in Martini's zonation (1971).

In the well 4 Teascu, at 272 m, a calcareous, light grey, fine marl with greenish-yellowish shades is encountered. The sample displays a very rich association of prevailingly Middle Eocene nannofossils. Among the fossils contained in the sample, *Nannotetrina quadrata* appears and fairly develops.

The nannoplankton association belongs to the Discoaster bifax subzone, the *Reticulofenestra umbilica* correlates to the identically called subzone in D. Bukry's standard zonation (1978), i.e. the NP16 Zone (Martini, 1971), and belongs to the Middle-Upper Eocene.

The age assigned to the sample relies on the presence of certain big-sized, well-developed *Reticulofenestra umbilica* and *Discoaster bifax* specimens.

In the well 1400 Bratovoești, depth 360 m and 62 Segarcea, depth 400 m, in equally calcareous, still yellowish, yellow-reddish in spots, compact, finely micaceous, marls, the nannoplankton content is charac-

216

terized by a relatively low species diversity, the association prevailing in Reticulofenestra umbilica. The dimensions of the specimens in this markerspecies are highly variable, measuring between  $5 - 15 \mu$  in diameter. Other typical nannoplankton species are : Chiasmolithus solitus, Helicosphaera heezeni, Neococcolithus dubius, Discoaster saipanensis. Reworked forms are extremely rare and seem to be restricted to the Cretaceous representatives.

The association in these two samples belongs to the Discoaster saipanensis subzone, correlates to the same subzone in Bukry's standard (1978) and to the NP17 Zone in Martini's zonation (1971) and corresponds to the Middle-Upper Eocene.

On most large surfaces of the Reticulofenestra umbilica and Chiasmolithus grandis specimens, there appear corosion aspects produced during deposition. It is likely that, alternatively, the geochemical conditions at the sediment-water interface were hostile to calcium carbonate, probably because of depth currents or vertical currents.

- Well 1401 Bratovoești, depth 248 m. The sample is a grev, brown-reddish, compact, finely micaferous marl, with friction lenses. It shows a very rich nannofossil content, dominated by the species Chiasmolithus oamarnensis, associated to Reticulofenestra umbilica, Dictyococcites bisectus, Discoaster saipanensis, Discoaster barbadiensis, Neococcolithes dubius. The described association, Chiasmolithus oamaruensis, correlates to the subzone with the same name, i.e. the Discoaster barbadiensis Zone in D. Bukry's zonation (1978) and to the NP18 Zone in Martini's zonation (1971) and corresponds to the Upper Eocene.

The samples in the wells 1400 Bratovoesti, depth 327 m and 13 Mărgăritesti, 513 m, are represented by a fairly calcareous marl, with slight greenish shades, with scarce calcareous sand films. They contain a very rich calcareous nannofossil association, dominated by Eocene species, although Paleocene or Cretaceous (mainly Upper Cretaceous) forms are equally present.

This association integrates into the Isthmolithus recurvus subzone, the Discoaster barbadiensis Zone, correlates to the subzone bearing the same name in Bukry's standard zonation (1978) and the NP20 Zone (Martini, 1971) and corresponds to the uppermost Eocene.

The Upper Eccene age is established due to the presence of the species Chiasmolithus oamaruensis and Isthmolithus recurvus (each characterizing the Upper Eccene sediments) and to the absence of any species usually characterizing post-Eccene depositions (e.g. the Sphenolithus predistentus-Sphenolithus distentus group).

Nannofossil preservation is generally good, although in the solution the maximal percentages belong to the youngest compartments of the association. It is, however, likely for the older forms while carried by solution to have been destroyed during reworking.

The following conclusions can be drawn after describing the lithofacial aspect and the nannoplankton content of the samples collected in the south-west of the Romanian Moesian Platform :

- The featured stratigraphic interval lies between the Upper Paleocene and the Upper Eocene.

- Correlation of electric logs with nannoplankton content helped towards drawing out a stratigraphic type-column for the investigated interval.

— Taking into account the well-location in the south-west of the Moesian Platform, the deposits are noticed to grow ever younger from south (27 Dobrotești) to north (13 Mărgăritești).

- The nannoplankton content is specific and allows a detailed stratigraphic biozonation, as 6 zones and 10 subzones are separated within the Paleocene-Eocene succession. In this way, the presence of the Upper Paleocene and Lower Eocene deposits, unnoticed microfaunistically, is revealed.

- The absence of the calcareous nannoplankton associations corresponding to the Lower Paleocene should be regarded as caused either by its non-deposition or by non-recoverable sampling within this formation.

## **Paleogeographic** Considerations

The region of the investigated samples was obviously related during the Cretaceous to the Lom Depression in Bulgaria. These relationships also persist at the very next Paleocene and Eocene levels and were testified by the correlation according to their foraminiferal content.

The marly-calcareous lithofacies, the great number of benthic and planktonic foraminifera, as well as the uncommon abundance of calcareous nannoplankton representatives come to demonstrate the existence of an epicontinental, open sea of a sublittoral zone, of a normal salinity and moderate temperature.

The progressing line of the Paleocene-Eocene waters is from north to south and is stressed by the deposition of nannoplankton associations, ever younger from Dobrotesti to Mărgăritesti. While advancing, the waters cover the raised relief of Cretaceous rocks with ever newer rocks. In this way, the deposits in each substage are partly conformable and partly unconformable and contain, besides the autochthonous nannoplakton elements, fossil forms of the broken geological formations, drawn into the basin and resedimented (basically the deposits in the Upper Cretaceous substratum).

The sedimentation taking place during the Paleogene stops at the Upper Eocene level, and it is only after a considerable gap that it re-occurs in the Badenian.

## REFERENCES

Bramlette M. N., Sullivan F. R. (1961) Coccolithophorids and related nannoplankton of the Early Tertiary in California. *Micropal.* 7(2): 129 - 179, 1 - 14.

Bratu E., Gheţa N. (1972) Zonarea depozitelor in facies de Şotrile ale Paleocen-Eocenului (Carpații Orientali) pe baza foraminiferelor planctonice şi a nannoplanctonului calcaros. Slud. cerc. geol., geofiz., geogr., seria geol. 17(2), pag. 323 - 334, pl. 1 - 5.

6-

- Bukry D. (1978) Biostratigraphy of Cenozoic marine sediment by calcareous nannofossils. Micropal. vol. 24, no. 1, pp. 44 - 60.
- Comșa D., Costea I. (1966) Asupra prezenței eocenului în sud-vestul Platformei Moesice din România. *Petrol și Gaze*, XVIII, 10, pag. 499 - 502, București.
- Costea I., Baltes N. (1962) Corelări stratigrafice pe baza microfosilelor. Ed. Tehnică, 263 pag., București.
- E d w a r d s A. R. (1971) A calcarcous Nannoplankton zonation of the New Zeeland Paleogene. Proc. 11 Plankt. Conf. Roma 1970 1: 381 - 419.
- Gartner St., jr. (1971) Calcareous nannofossils from the Joides Blake Plateau cores and revision of Paleogene nannofossil zonation. Tulane Univ., Tulane Stud. Geol. Pal., vol. 8, no. 3, pp. 23 - 37, pls. 1 - 6, text-fig. 1.
- Grigoraș N. (1961) Geologia zăcămintelor de petrol și gaze din R.P.R. Ed. Tehnică, 236 pag., București.
- Haq B. U. (1971) Paleogene calcareous nannoflora. Part I: The Paleocene of west-central Persia and the Upper Paleocene-Eocene of west Pakistan. Acta Univ. Stockholmiensis. Stockholm Contr. Geol. vol. 25, no. 1, pp. 1 - 56, pls. 1 - 14.
- Hay W. W., Mohler H. P. (1967) Calcareous Nannoplankton from early Tertiary rocks at Pont Labau, France and Paleocene-Early Eocene correlations. *Journ. of Paleont.* 41(6): 1505-1541, 196-206.
- Martini E. (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proc. of the II Plankt. Conf., Roma 1970, pp. 739 - 785, pls. 1 - 4.
- Perch-Nielsen, Katharina (1971) Elektronenmikroskopische Untersuchungen lithen und verwandten Formen aus dem Eozän von Dänemark. K. Danske Vidensk. Selsk., Biol. skr., vol. 18, no. 3, pp. 1 - 76, pls. 1 - 61, text-figs, 1 - 2, table 1.
- Tzaneva P. (1963) Stratigrafia na palcoghena v sondaj nr. 11 pri gr. Oreahova. "Spisanie na Bilg., Gheol., Drujest, vol. XXIV, 3, Sofia.
  - Vapţarova I. (1961) Stratigrafia na gornata kreda i paleoghena pri S. Dilgodelti, Lomsko, po microfaunisticini danni. "Spisanie na Bilg. Gheol. Drujest, Vol. XXII, 2, Sofia.





Institutul Geologic al României



USCUDS IT NODIFER BRAMLETTE & RIEDEL TANIN NODIFER BRAMLETTE & RIEDEL TANIN NODIFER BRAMLETTE & RIEDEL TANIN NODIFER BRAMLETTE & RIEDEL USCCOASTER DEFLANDREI BRAMLETTE & SULLIVAN DISCOASTER DEFLANDRER CHIASMOLITHUS SOLITUS (BRAMLETTE & SULLIVAN)LOKER MARTINI STRADNER MARTINI STRATTER STRATTA	PALEOCENT         CALCAREOUS         ZON	E – EOCENE NANNOPLANKTON ES
	DISCOASTER BARBADIENSIS	ISTHMOLITHUS RECURVUS CHIASMOLITHUS OAMARUENSIS
	RETICULOFENESTRA UMBILICA	DISCOASTER SAIPANENSIS DISCOASTER BIFAX
•••••	NANNOTETRINA QUADRATA	COCCOLITHUS STAURION CHIASMOLITHUS GIGAS
	TRIBRACHIATUS ORTHOSTYLUS	
	DISCOASTER DIASTYPUS	DISCOASTER BINODOSUS TRIBRACHIATHUS
	DISCOASTER MULTIRADIATUS	CAMPYLOSPHAERA EODEL A CHIASMOLITHUS BIDENS
US NANNOFOSSILS IN THE HOESIAN	HE PALEOCENE - PLATFORM	- EOCENE

## ON THE EVOLUTION OF LIMNOCARDIIDS AND VIVIPARIDS IN THE UPPER NEOGENE OF THE DACIC BASIN¹

BY

#### IOAN PAPAIANOPOL², VICTORIA LUBENESCU³

The more complete knowledge of large fossil molluscan groups — such as bivalves and gastropods — was and is still a requirement in the minute biostratigraphic investigations carried out on the Neogene deposits. These elements supply the first field evidence on the age of the deposits wherein they appear, first information referring to the age of the Neogene deposits intercepted by drillings and, later on, their study leads to obtain important data both for the correlation of remote Neogene deposits and for paleogeographic reconstructions.

The researches carried out up to now on some important groups of fossil mollusca — e.g. limnocardiids (among bivalves) and viviparids (among gastropods) — led to accumulation of data which allow us to follow their evolution tendencies in the Upper Neogene of the Dacic Basin. The more so as both limnocardiids and viviparids are more frequently found in the Upper Neogene of the Dacic Basin, yielding elements of utmost significance for the clearing out of the Upper Neogene biostratigraphy in this sedimentation area.

Further on we shall present the evolution tendencies of some genera and species of limnocardiids occurring in the post-Meotian deposits of the Dacic Basin. It is to be mentioned that we shall deal, on the one hand, with those genera and subgenera which, appearing in a large time span, make it possible to observe both the evolution tendencies and the maximums of flowering and diversification and, on the other hand, those supraspecific taxa whose degree of knowledge allow the tackling of such a subject.

Thus, subgenus *Euxinicardium* can be found in the Lower Pontian of the Dacic Basin, being represented by the taxa *Limnocardium (Euxinicardium)* subodessae (S i n z o w) and L. (E.) subodessae ursina E b e r -



¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981 September 8 - 13, Bucharest, Romania.

² Institute of Geology and Geophysics, str. Caransebeş 1, 78344 Bucharest, Romania.

³ Geological Enterprise of Prospection for Solid Mineral Substances, str. Caransebeş 1, 78344 Bucharest, Romania.

s in. In the Middle Pontian (Portaferrian) one may observe a remarkable proliferation of subgenus *Euxinicardium* (P a p a i a n o p o l, 1981, in press), whereas in the Bosphorian it is in an obvious decline. Within the Dacian interval forms of *Euxinicardium* are more frequently found in the Upper Dacian (Parscovian) than in the Lower Dacian (Getian). During the Pontian and the Dacian in the Dacic Basin the evolution of *Euxinicardium* followed the following directions:

- The reduction of the shell sizes and its convexity. In the Dacic Basin no specimens of large-sized *Euxinicardium*, like those of *Limno*cardium (*Euxinicardium*) esperanzae A n d r u s o v type of the Kimmerian in the Euxinic Basin, have been found.

- The constant increase of the rib number of the external surface, concomitantly with the stress of their asymmetry. Except few forms, such as Limnocardium (Euxinicardium) inlongaevum E b e r s i n, the Pontian forms have generally less than 14 - 15 ribs on the anterior field, whereas the Dacian species have generally more than 18 ribs on the anterior field, the ribs being often strongly asymmetrical in the anterior and posterior part of the anterior field, as in the case of the taxa Limnocardium (Euxinicardium) moskoni P a p a i a n o p o l, L. (E.) orolesi P a p a i a n o p o l, L. (E.) peregrinum P a p a i a n o p o l.

- Referring to the hinge, it is to point out that, unlike the Pontian species, numerous enough Upper Dacian taxa have a posterior lateral tooth on the left valve, more or less obvious, like at Limnocardium (Euxinicardium) orolesi P a p a i a n o p o 1 and L.(E.) eximium P a p a i a - n o p o 1. Moreover, in case of the Dacian taxa the upper lateral tooth on the left valve appears much more frequently than at the Pontian species.

Subgenus Tauricardium is found in the Dacic Basin since the Middle Pontian, represented by Limnocardium (Tauricardium) petersi (H  $\bar{o}$  r n e s). In the Upper Pontian (Bosphorian), besides such specimens, there occurs species Limnocardium (Tauricardium) praesquamulosum E b e r s i n, whose ribs have a triangular cross section. The Lower Dacian (Getian) is characterized by the form Limnocardium (Tauricardium) olteniae (I on e s c u-A r g e t o a i a), which appeared in the Upper Pontian. It is characterized by a large-size, obvious convexity of the shell, triangular ribs on their whole length and a prominent umbonal zone. Therefore, it may be admitted that in the Dacic Basin forms of this subgenus evoluted in the sense of the size increase and shell convexity, sharpening of the ribs of the external surface and the prominence of the umbonal zone.

Genus Chartoconcha had an interesting evolution in the Dacic Basin. In the Middle Pontian (Portaferrian) it is characterized by species with a ribbed external surface of the shell, e.g. Chartoconcha asaphiopsis (B r u s i n a) and Ch. candida P a p a i a n o p o l. Beside them, in Portaferrian there also occurs Chartoconcha bayerni (R. H o e r n e s), which sometimes shows the existence of a fine ribbing on a small surface, around the umbo. In the Upper Pontian the existence of ribbed forms on the whole external surface is no longer observed; there are to be found only species whose ribbing appears only around the umbo zone, e.g. Chartoconcha bayerni (R. H o e r n e s), Ch. minuta P a p a i a n o p o l, Ch. rumana (W e n z). At some Dacian taxa — e.g. Chartoconcha ovata P a p a -

222

i a n o p o 1 — the external surface presents no traces of radial ribbing. Therefore, referring to the ribbing, it may be ascertained that there is a transition from species with the whole external surface ribbed — e.g. Portaferrian species — to forms with a less obvious ribbing only in the zone around the umbo (in the Bosphorian), and then to entirely smooth forms (in the Dacian) (P a p a i a n o p o l, 1975).

As regards Prosodacna, specimens belonging to this genus are found in the Dacie Basin, in the Upper Pontian (Bosphorian). As mentioned on another occasion (Papaianopol, 1977), as compared to the type of the genus (Cardium macrodon Deshayes), at most of the Pontian species several features occurring at the Dacian and Kimmerian Prosodacna - e.g. hypertrophy on either value of the anterior lateral tooth. strong thickening of the shell in its anterior part, and marked shifting of the umbo in the anterior part of the valve – are no longer observed or they are found in an incipient form at the Pontian Prosodacna. Also in the Upper Pontian, in the Dacic Basin there occur the first specimens of subgenus *Psilodon*, which will develop strongly in the Dacian. In the Lower Dacian (Getian) both species of the subgenus Prosodacna (with numerous, smooth and flat ribs) and forms of the subgenus *Psilodon* are apt to be found. In the Upper Dacian (Parscovian) subgenus Psilodon is widely developed, its evolution being in the sense of the hypertrophy of the anterior lateral teeth on either valve, the decrease of the rib number concomitantly with the increase of their height; the tendency of reduction of the cardinal tooth and of the posterior lateral one on the left valve can also be observed.

Genus Zamphiridacna, with its first occurrences in the Middle Pontian (Portaferrian) in the Dacic Basin, is widely developed and becomes typical of the Dacian deposits. Taking into account the morphologic characters of the Pontian and Dacian Zamphiridacna it may be ascertained (Papaianopol, 1976) that the species of this genus have evoluted constantly towards the increase of the size and convexity of the valves. the total reduction of the cardinal teeth (found at Zamphiridacna portaferrica Papaianopol of the Middle Pontian) and the disappearing of the ribbing of the posterior field and the anterior extremity of the anterior field. As regards the ribbing, both the Pontian and the Dacian species have the first anterior ribs rounded, which at some Dacian taxa -Zamphiridacna orientalis (S a b b a) and Z. zamphiri (C o b  $\check{a}$  l c e s c u) — become triangular or even carenate. It is worth mentioning, at some specimens of Upper Dacian Zamphiridacna, the existence of a posterior lateral tooth on the left valve (Papaianopol, 1976), element of the hinge which is completely lacking at most of the Pontian and Dacian Zamphiridacna.

Genus Dacicardium, which occurred in the Middle Pontian, is very frequently found in the Dacian. Species Dacicardium vetustum P a pai a n o p o l, found both in the Middle Pontian (Portaferrian) and the Upper Pontian (Bosphorian), which has a more complete hinge (five teeth on the right valve and three teeth on the left one), yields Dacicardium rumanum (F o n t a n n e s) of the Dacian; it usually has only one anterior tooth on the right valve, a large size and a less obvious keel of the last ribs of the anterior field. Dacicardium rumanum (F o n t a n n e s) gave

3

Institutul Geologic al României

rise, by the increase of the site and elongation of the shell, to *Dacicardium* dacianum (Papaianopol) and the latter provided *Dacicardium* validus Papaianopol et Agapia Popescu, with a rounded, more slightly inequilateral shell and a more marked umbo zone.

Genus Plagiodacna, also with an interesting evolution, is frequently found beginning with the Middle Pontian (Portaferrian) — represented by Plagiodacna carinata (Deshayes), species often found in the Upper Pontian (Bosphorian) and also in the Lower Dacian (Getian). In the Pontian-Dacian of the Dacic Basin the evolution tendency of Plagiodacna was towards the reduction of the hinge, the development of the subapical plate and diminish of the carena (Papaianopol, 1977 a); this evolution mostly coincides with that of the Plagiodacna from the Euxinic Basin (A hylediani, 1966).

Referring to Viviparids, it is worth mentioning that they are widespread in the Dacic Basin, Viviparus moldavicus W e n z, endemic species proper to the Meotian in the Dacic Basin, being found both in the Lower Meotian (Oltenian) and in the Upper Meotian (Moldavian). In the East Carpathian Bend Zone in the Upper Meotian deposits one could recognize species Viviparus incertus M a c a r o v i c i, also reported by R o ş k a (1973) from the Upper Meotian in the south of the Moldavian Soviet Socialist Republic.

In the Lower Pontian (Odessian) Viviparus incertus Macarovici is found, a species described and illustrated for the first time by Macarovici (1940) as Viviparus neumayri incertus. This taxon has been subsequently reviewed by T a boi a kova (1964), who recognized its affinities with Viviparus achatinoides, considering it a variety of the latter.

Viviparus incertus, frequently found in the Dacic Basinin the Odessian base, is a species with a fragile shell and a large size, related to Viviparus achatinoides; however, it maintains its individuality as particular species. Viviparus incertus M a c a r o v i c i may be recognized both in the footwall and in the hanging wall of some coal seams in the Boteni area (Argeş district) as well as in different places in the Getic and Wallachian depressions. Viviparus incertus M a c a r o v i c i may be encountered both in the Lower Pontian (Odessian) deposits and in the Middle Pontian (Portaferrian). In certain cases, Viviparus incertus M a c a r o v i c i appears in association with Viviparus botenicus L u b e n e s c u, characterized by a pronounced elongation of the coiles. Another endemic species – Viviparus moskoni L u b e n e s c u — is encountered also in the Middle Pontian of the Dacic Basin, especially in the Congeria rhomboidea Beds.

Genus Viviparus has a peculiar proliferation in the Upper Pontian (Bosphorian). Since 1838, D e s h a y e s has described the form Viviparus achatinoides in the Kerci Peninsula, in deposits considered now of Bosphorian age. As compared to the holotype — described probably after a young specimen — the specimens from the Dacic Basin are well developed, strong, some of them with endemic characters; it allowed us to separate some varieties, such as Viviparus achatinoides pseudoneumayri L u b e n e s c u and V. achatinoides sabbae L u b e n e s c u.

From the "achatinoide" trunk most of the Dacian and Romanian Viviparids developed. Also in the Upper Pontian (Bosphorian) one may

– Institutul Geologic al României

observe the appearance of the first shells of Viviparus with a visible carena, or an obvious settling of the coiles, as in case of Viviparus motruensis (Sabba), V. glogovensis (Sabba), V. papaianopoli Lubenescu.

At the end of the Bosphorian and the beginning of the Lower Dacian (Getian) one may observe, on the one hand, the extinction of old species of Viviparids and, on the other hand, the appearance of new taxa. The sequence of Getian viviparids is highly numerous and diversified. Besides Viviparus achatinoides (Deshayes) — which may be found until the Getian — a lot of new species, proper to the Dacic Basin, occur at this stratigraphic level. New taxa — Viviparus getianus Lubenescu, V. carenatus Lubenescu, V. macarovicii Lubenescu — have been identified in the Getian beside forms pointed out since the last century — Viviparus argesiensis (Sabba), V. monasterialis (Fontanes).

The appearance, at some forms, of a strong carena, as well as of the spiral cords determined S a b b a Stefănescu (1896) to assign them to the subgenus Tylotoma. The existence of transition elements between carenate and noncarenate species points to a close relation between the two types of shells; however, no clear delimitation of a possible subgenus Tylotoma as against the nominative subgenus Viviparus can be made. That is why we do not consider it necessary to separate the subgenus Tylotoma within the genus Viviparus.

Within the Getian viviparids mention should be made of the predominance of the Romanian faunas ancestors. Thus, Viviparus praecraiovensis Lubenescu, ancestor of Viviparus craiovensis (Tournouër) from the Romanian, is found since the Upper Pontian. Similarly, Viviparus berbestiensis Lubenescu (occurring at the level of the Pachydacna Beds in the Getian base), coming from Viviparus argesiensis (Sabba), is an ancestor of Viviparus bifarcinatus (Bielz) and Viviparus stricturatus (Neumayr), for which it has often been mistaken. Likewise, Viviparus muscelensis Lubenescu shows many similarities with Viviparus turgidus (Bielz), the former being found between and above the Dacian coal seams in Oltenia and the Argeş District. Viviparus cucestiensis Lubenescu is likely to be related to Viviparus rudis (Neumayr).

In the Lower Dacian besides sculptured viviparids there are also observed smooth specimens and specimens with a relative high convexity - e.g. Viviparus dacianus Lubenescu, very often mistaken for Viviparus rumanus Tournouër.

The Upper Dacian (Parscovian) is characterized by the prevalence of smooth or sculptured, large-sized viviparids. Among the numerous species, mostly found out by Cobălcescu (1883), mention should be made of Viviparus rumanus Tournouër, V. murgescui Cobălcescu, V. alexandrieni Cobălcescu, V. herberti Cobălcescu, and V. berbestiensis grandis Lubenescu.

In the Romanian there is developed a fauna of strongly sculptured viviparids, with a size smaller than that of the Parscovian forms. It is only at this stage that we find species common to those occurring in the "Paludine Beds" of the Pannonian Realm, e.g. Viviparus bifarcinatus (Bielz), V. stricturatus (Neumayr), V. rudis (Neumayr).

15 — c. 50

At the same time we establish, in the Romanian of the Dacic Basin, the presence of forms similar to certain Slavonic species which, however, have particular characteristics; it made us to consider them local varieties of the latter. Among them, mention should be made of *Viviparus dezmanianus dacicus* L u b e n e s c u and *V. pilari olteniae* L u b e n e s c u. Beside them there also appear endemic species, typical of the Romanian in the Dacic Basin, e.g. *Viviparus turgidus* (Bielz), *V. craiovensis* (Sabba), *V. bergeroni* (Sabba), *V. falconensis* L u b e n e s c u.

It is worth mentioning the existence of deposits including highly sculptured viviparids, similar to the forms found in the Upper Paludine Beds: Viviparus novskaensis P e n e c k e and Viviparus sturi (N e u m a y r). Such specimens have been reported from Sopirlita (Oltet Valley) and the Igozălău Valley (Gorj District). As known, the comparisons between the Dacic and the Pannonian basins relying on viviparids were made up to the level of the lower and middle Paludine Beds. W e n z (1943) pointed out that even in the Dacic Basin the evolution of this gastropoda group ended before its maximum development. The identification of the two deposits with strongly sculptured viviparids makes us infer that, in certain zones of the Dacic Basin, viviparids continued their evolution. It is possible that these zones might have been more extended but erosion removed the necessary evidences.

### REFERENCES

- Ahvlediani E. G. (1966) K izuceniu roda Plagiodacna. Soob. Akad. Nauk Gruzinsko i S.S.R., XLII, 2, p. 391 – 396, 1 pl., Tbilisi.
- Cobălcescu G. (1883) Studii geologice și paleontologice asupra unor tărimuri terțiare din unele părți ale României. Mem. Geol. Sc. Milit. Iași, 163 p., 16 pl., București.
- Deshayes G. F. (1838) Description du coquilles fossiles recuillies en Crimée. Mêm. Soc. Géol. France, t. 3, part I, p. 37 - 69, Paris.
- Gillet S. (1943) Les Limnocardiidés des couches à Congéries de Roumanie. Mem. Inst. Geol., IV, 119 p., 6 pl., București.
- Macarovici N. (1940) Recherches geologiques et paléontologiques dans la Bassarabie Meridionale. An. sc. l'Université de Jassy, XXVI, p. 177 - 404, 9 pl., Iași.
- Neumayr M., Paul C. M. (1875) Die Congerien und Paludinenschichten Slavoniensund deren Faunen. Abb. k. k. geol. Reichs., 7(3) 111 p., 10 pl., Wien.
- Papaianopol I. (1975) Studiul unor taxoni ai genului Chartoconcha Andrusov din Pliocenul Bazinului Dacic și importanța lor biostratigrafică. D. S. Inst. geol. geofiz., LXI (1973-1974), 3, Paleontologie, p. 125 148,5 pl., București.
  - (1976) Genul Zamphiridacna in Ponțianul mediu (Portaferrian) din Muntenia. St. cercgeol. geof. geogr., (geologie), 21, p. 143 - 154,3 pl., București.
  - (1977) Contributions à l'étude des prosodacnes du Bassin Dacique. D. S. Inst. geol. geofiz.,.
     LXIII (1976), 3, Paleontologie, p. 17 33, 7 pl., Bucureşti.
  - (1977a) Plagiodacnele din Bazinul Dacic. D. S. Inst. geol. geofiz., LXIII (1976), 3, Paleon-
  - tologie, p. 35 62,11 pl., București.

226



- (1982) L'êtude des espèces d'Euxinicardium du Pontien et Dacien du Bassin Dacique. Mém. Inst. Géol. Géophys. XXXI, Bucarest (sous presse).
- Roșka V. N. (1973) Molliuski Meotisa severo-zapadnogo Pricernomoria. Izd. "Știința", 284 p., 40 pl., Chișinău.
- Ştefănescu S. (1896) Etudes sur les terrains tertiaires de Roumanie. Contribution à l'étude des faunes sarmatiques, pontiques et levantines. Mém. Soc. Géol. France, Paléontologie, 4, 147 p., 12 pl., Paris.
- Taboiakova K. Ia. (1964) Opit biometriceskogo izucenia pliotenovih viviparid iuga S.S.S.R. Akad. Nauk. S.S.S.R., Paleont. Inst., XLIX, 88 p., 9 pl., Moskva.
- W e n z W. (1942) Die Mollusken des Pliozäns der rumänischen Erdölgebiete. Senkenbergiana, 24, 93 p., 71 pl., Frankfurt a Main.

#### QUESTIONS

P. Stevanović: 1. It is obvious that none of the mentioned species of Viviparids exist in Romania and the Pannonian Realm. It is likely that the collections have not been compared. There had to be forms in common and a revision had to be made.

2. Is there the species Pterodacna in the Romanian Pontian?

Answers: 1. The study of Viviparids in the Dacic Basin, carried out by one of the authors of the paper (V. L u b e n e s c u), pointed out that at the Pontian level there existed local faunas of Viviparids, well established, which might represent a barrier for other forms which could have come from the west (the Pannonian Basin). The presence of some common forms of Viviparids in the Middle Pontian (Portaferian) deposits in the Pannonian and Dacic basins has not, however, been out of question, but the confirmation or not of this hypothesis supposes the possibility of carrying out of a comparative study of the Pontian Viviparids in the two sedimentary basins.

2. The existence of the genus *Plerodacna* was pointed out by I. P a p a i a n o p o l in the Upper Pontian deposits in the east of Muntenia (eastern part of the Dacic Basin).





Institutul Geologic al României

## REMARKS ON OLIGOCENE CHRONO- AND BIOSTRATIGRAPHY IN TRANSYLVANIA (ROMANIA)¹

ΒY

#### ANATOL RUSU²

In the last decade several remarkable biostratigraphic results on the Oligocene in NW Transylvania were obtained. The large number of published papers, different interpretation of results, as well as the difficulty of using an adequate chronostratigraphic scale made more laborious the obtaining of a clear image on the Oligocene stratigraphy in the study zone. The present paper tries to synthetize the existing biostratigraphic data — including it into a logic and unitary scheme and to clear up certain apparent contradictions.

Three events have revolutioned the modern view on the stratigraphy of the Oligocene deposits in Transylvania. In their chronologic order they are, as follows:

- establishing of planktonic foraminiferal zones in the Vima Beds (Popescu, 1972) and, relying on them, the specification of the Oligocene/Miocene boundary within this formation;

- discovery of the Nucula comta level (Rusu, 1972), with a typical Rupelian s.s. fauna, in the base of the Ileanda Beds;

- determination of the Lattorfian position in the Transylvania Basin on the basis of the calcareous nannoplankton (Martini& Moisescu, 1974).

Several relevant papers on foraminifera, ostracoda, nannoplankton, mollusca and fossil flora completed the known biostratigraphic scheme, allowing a more precise determination of the content of the Oligocene stages in the epicontinental deposits of Transylvania.

Eocene/Oligocene Boundary. According to the evolution of the researches concerning the Transylvanian Paleogene, it may be ascertained that the possibility to establish this boundary, as it is accepted at present, appears since the first study on the nannoplankton of the Brebi Marls.



¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981, September 8 – 13, Bucharest, Romania.

² Institute of Geology and Geophysics, str. Caransebeş 1, 78344 Bucharest, Romania.

A. RUSU

(= Bryozoa Marls) in which P o p e s c u and G h e t a (1972, p. 132) pointed out: "At the level of sample 2761 (Turea) there occurs a modification by the extinction of species *Cyclococcolithus formosus* and more frequent occurrence of the discolithines". Using other biozonation schemes, the above—mentioned authors do not point out that it represents also the limit between M a r t i n i's (1969) standard nannoplankton zones NP21 (Lattorfian or Lower Tongrian) and NP 22 (Upper Tongrian = Henisian), which was pointed out in Transylvania, too (M a r t i n i and M o i s e s c u, 1974) (see Figure). Meantime M e s z á r o s et al. (1973, 1974) separate the same two nannoplankton zones, but situated in other intervals of the lithologic succession. Considering erroneously the base of zone NP21 above the *Pyenodonte gigantica* level, the authors delimited, fortunately well, the Eocene/Oligocene boundary in the Mera profile (M e s z á r o s et al., 1974, Fig. 1).

The zonation achieved by Martini and Moisescu (1974) indicated, for the first time correctly, the position of the Lattorfian in Transylvania, a stage including the extension of the nannoplankton standard zone NP21 (Ericsonia subdisticha zone) and which was regarded, according to the West German authors, as Oligocene. Implicitly it was considered that the Eocene/Oligocene boundary — corresponding to the threshold between zone NP 20 and zone NP 21 — would be situated towards the base of the Brebi Marls. As regards Transylvania's stratigraphy a situation not accepted in the mesogean realm is reached, that is to establish the boundary within the Nummulites fabianii typic zone, nearby the epibolic level of the index species.

The results obtained by M a r t i n i and M o i s e s c u (1974) were reinterpreted by us (R u s u, 1974), when it was established that the boundary discussed should be located between the standard zones NP 21 and NP22, that is in the interval between the *Pycnodonte gigantica* marker level and the top of the Brebi Marls (see also R u s u and D r ă g ă n e s c u, 1976, R u s u, 1977). The determination of the base of the Helicopontosphaera reticulata zone (NP 22) made only after the extinction of specimens of *Cyclococcolithus formosus* is approximatively enough, especially that in the Brebi Marls overlying the *Pycnodonte gigantica* level, this form is found only sporadically (G h e t a, oral information). Unfortunately in the Transylvania Basin species *Cyclococcolithus margaritae* R ot h & H a y is unknown, whose occurrence (used in biozonation) would give more certainty as to the establishing of the boundary between zones NP 21 and NP 22.

A bionomic threshold is pointed out also in the ostracod fauna approximately in the interval of the *Pycnodonte gigantica* level. Thus, the distribution table given by Olteanu and Popescu (1973) shows that at this level several species become extinct (*Cythereis dadayi* Mehes, *Paijenborchella tritacosta* Olteanu, *Loxoconcha parva* Pietrzeniuk, *Cytherura oedelemensis* Keij, *Semicytherura forestensis* (Keij) and new species appear, e.g. *Cytheridea helvetica* (Lnks), *C. henisensis* Keij, *C. strigosa* Pietrzeniuk and *Krithe pernoides* (Bornemann). În 1977, Olteanu separated, within the Brebi Marls, even two local zones of ostracoda, having the extension of the index forms:

- ОИОЯНО ЯДІТАЯТЗ		MIOCENE				NAITTAH)			Rupelian s.s. N A S. L.			RUPELI RUPELI			EOCENE BRIABON	
DADIZ		ENN ZNN		LN	NP 259 NN		7	NP2	NP 23		NP 22			ISAN		
	NANNOPLANKTON	· ·	Sphenolithus belemnos Z. Discoaster druggi Zane Triauetrorhabdulus		Triquetrorhabdulus	carinatus zone Sphenolithus	Sphenolithus ciperoensis Zone Sphenolithus		distentus Zone	Sphenolithus predistentus Zone			Helicopontosphaera reticulata Zone			Erıcsonia subdisticha Zone
	sanoz sanoz	9 N	1 9	N	7N	b 33	1	1Zd		50	d		61 d	1 8	36 9	Ad
BIOSTRATIGRAPHY	FORAMINIFERA	Globigerinoides tritobus Zone			Ulobigerinoldes primordius Zone	Globigerina ciperoensis∕G.	angulioficinalis Zone	/G tripartita Zone		Glandulina aegualis	Dorathya textitaraides	Coinclosuding	spirotocutina elongafa Spirotocutina	pleenfafa	littohigerina amplingerturn/ /Pseudohastigerina micra Z.	Glcborotalia cerroazulen- sis Zone
	OSTRACODS				Occultocythereis	bituberculata Henryhowella asperrima	Cytheriden curvata Evitieriden jonesiana	Cuneocythere marginata	Darwinula sp.		Thracella apostolescui	Lytheridea ventricosa	_Paracypris.cerodynamica_ Cythereita_fénuistri - ata_	ZGNE	Paujenborchella frvcostata Zone	Phlyctocythere eocaenica Zone
	5					Turintella venus					1 N		soj	000	19 as	Pec
	MOLLUSES	Pecten beudanti strictocostata	Chlamys hortensis	Chlamys gigas	Callista litacinoides	Crassostrea aginensis Polymesoda brongniorti	Amusion burdigatensis Crassostr. cyalhula	Polymesodu convexa	Lentidium triangulun Lentidium vinoarodsk	Cardium lipoldi	Nucula comha Cardium lipoldi, L.	vinogrodsku, L. sakol	Crassostr. multiplicata Polymesoda vapincana Ampullinopsis crossatinc	Tymponotorios labynnithun	Chlamys biarritzensis	Pycnodonte giganticc Chama granulosa
	REA			S	038	AMIV		-	NO 11	111	7W80 1100	2	AT	:	4	HΕ
I IT HOSTBATIGBAPHIC UNITS	AU AREA   MESES AREA   PRELUCA AR	нгоа веох	CHECHIS MARLS	CORUS BEDS	•r	SÎNMIHAI BEDS	71 MBOR BEDS	8 •	CETATE VAR SANDSTONE	BEUS ILEANDA BEDS	VCU BEDS d	M 0 1 G R A D COOCMANN BEDS	B E D S     B E D S     CUCIULA       F E A     B E D S     CUCIULA       B E D S     CURTUUS BEDS     BEDS	• • • b • • CIUMÁRNA CIGLEAN • • • b •	LIMES HOLA LI LIMESTONE	BREBI MARLS LIMESTON

a, Pycnodonte gigantica Level; b, Scutella Lower Level; c, Scutella Upper Level; d, Nucula conta Level; c, Pycnodonte callifera Level; f, Crassostrea cyaliula Level; g. Anuisopector burdigatensis Level; h. Callista litacinoides Level; i, Crassostrea aginensis Level. 1 i * ** * 3.



Phlyctocythere eocaenica Keij zone, below the Pycnodonte gigantica level, and Paijenborchella tricostata (Lnks)zone, above the mentioned level (Figure). The author considered the first zone of Eocene age and the second one of Eocene-Oligocene age. Lately, Olteanu (1980) has established the Eocene/Oligocene boundary at the Pycnodonte gigantica level, marked by the explosive development of the species Bathocypris arcuata (Münst.) and Pterigocythereis fimbriata (Münst.) and the appearance of new species in the basin.

The planktonic foraminifera fauna brings the best arguments in favour of the drawing of the Eocene/Oligocene boundary in the Transylvania Basin. Thus, within the Brebi Marls, Iva and Rusu (1982) distinguished two planktonic foraminifera zones typical of the mesogean realm: Globorotalia cerroazulensis zone, the extension of which approximately corresponds to the planktonic foraminifera standard zones P 16 (partim) and P 17 (Blow, 1969) and Globigerina ampliapertura/ Pseudohastigerina micra zone, equivalent to zone P 18 (Figure). The bionomic threshold between the two mentioned zones — established on the extinction of the forms Globorotalia cerroazulensis cerroazulensis (Cole) and G. cerroazulensis cunialensis Toumarkine & Bolli and the occurrence of the species Globigerina ampliapertura Bolli is situated at the base of the Pycnodonte gigantica level and corresponds to the Priabonian/Oligocene boundary in the reference sections of the Paleogene in Italy. In the Globigerina ampliapertura /Pseudohastigerina micra zone in Transylvania there occur also typical Oligocene species such as Pseudohastigerina naquewichiensis (Mjatliuk), Globigerina liverovskoe (Bykova), Chiloquembelina gracilima Andrae, etc. (see Iva& Rusu, 1982).

Other groups of organisms do not bring specifications as regards the Eocene/Oligocene boundary; modifications within the fauna of molluscs, echinids, nummulits can be observed more upwards in the stratigraphic column (at the level of the Hoia Beds), partially determined by the paleogeographic changes.

The Mera Beds and their equivalent in the Preluca area — the Cuciulat Beds (Figure) — include a typical Oligocene mollusca fauna, represented by Ampullinopsis crassatina (L m k.), Turritella biarritzensis (Bouss.), Tympanotonos labyrinthum (Nyst), Pirenella plicata galeotti (Nyst), Polymesoda convexa vapincana (d'Orb.), Crassostrea cyathula multiplicata (Tourn.), Pitar verneuili (d'Arch.), etc. (see Moisescu, 1972, 1978; Rusu, 1977). Also at this level the echinid Scutella subtrigona Koch appears, considered (Rusu, 1977, p. 164) a geographic subspecies of Scutella subtetragona Grat. of the early Oligocene in Aquitania.

The Mera Beds, with their unitary macrofauna, have been assigned to the Henisian, considered a subdivision of the Rupelian s.l. (see R u s u, 1977).

Henisian (=Upper Tongrian) includes: the upper part of the Brebi Marls, the Hoia Linestone and, as it will be seen further on, most of the Mera Beds and their lateral equivalents (Figure).

232

Henisian/Rupelian s.s. Boundary. As the biostratigraphic results obtained up to now are not conclusive for the specification of this limit, the question is still open for discussion. However, we may approximately locate the Henisian/Rupelian boundary within the Mera Beds.

As known, the Henisian has the extinction of the nannoplankton standard zone NP 22 (Helicopontosphaera reticulata zone). In the Transylvania Basin this zone is considered to be spread up to the base of the Mera Beds from the type profile (Mészáros et al., 1974) and beyond the Scutella Lower Level (Martini, Moisescu, 1974). According to Martini and Moisescu (1974) the upper limit of zone NP 22 is poorly defined, the next zone (NP 23) being represented on tables by a question mark. Our observations on two important marker species of the Paleogene — Isthmolithus recurvus Defl. and particularly Lanternithus minutus Stradner (see Martini and Moisescu, 1974, Fig. 3) — made us include the whole interval of the Mera Beds to the zone NP 22 (Rusu, 1977, p. 165).

The ostracod faunas of the Cuciulat Beds (Oltean u, 1980) bring new elements for the establishing of the Henisian/Rupelian s.s. boundary. They indicate a bionomic threshold between the Scutella Upper Level and a packet of grey clays, marked by the extinction of some taxa, such as Leguminocythere is decipiens (Lnks.), Cytherella gracilis Lnks., Triebelina punctata Deltel, Occultocythere is gradata Prtzk., Hermanites memorans Moos, Paracytheridea tuberosa Lnks., Xestoleber is muelleriana Lnks., X. subglobosa (Bosq.), etc. and the appearance of new species: Paracypris aerodynamica Oertli, Cytheretta aff. ramosa (Lnks.), C. aff. schoelleri (Keij), C. aff. gutzwileri Oertli, C. aff. fallens Oertli and Bairdia aff. subdeltoidea (Münst). Therefore, we admit as Henisian/Rupelian s.s. boundary (considered substages of the Rupelian s. l.) the limit given by ostracods, located towards the terminal part of the Cuciulat Beds or the Mera Beds, immediately over the Scutella Upper Level (Figure).

A typical Rupelian (s.s.) fauna has been reported from two members : the Bizuşa and Ileanda beds, as well as their littoral equivalents in the basin (Creaca, Dîncu and Cetate beds), all assigned to the Dolheni Formation (Rusu, 1977, p. 122). Here there occurs a particular malacofauna, specific to the Rupelian in the Transeuropean domain, represented by *Corbula* ex gr. sokolovi (Karlov), *Corbula* ex gr. helmerseni Michaj lovschi, Lentidium triangulum (Nyst.), L. ex gr. nitidum (Sow.), L. vinogrodskii Merklin, Polymesoda convexa Brgt., Cardium serogosicum Noss., C. lipoldi Rolle, Congeria brardi (Brgt.), C. nysti (d'Orb.), C. tenuissima Moisescu, Rzehakia cimlanica Popov, etc. (Moisescu, 1972; Rusu, 1977). The ostracod fauna is dominated by the species Thracella apostolescui Sönmez, Cytheridea ventricosa Goerlich, Cytherossa spathacea (Lnks.) (Olteanu, 1980).

The mentioned invertebrate assemblages belong to a pliohaline brackish sea (salinity  $9 - 16.5^{\circ}/_{00}$ ), extending from the Carpathian zone up to the Aral Lake region, isolated by Tethys and the northern realm. It represents the first temporary separation of the territory which later on — definitively isolated — will become the Paratethys Realm. In the author's opinion it is only at this level that the Kiscellian might begin,

A. RUSU

6

a regional stage older than the Egerian proposed by B lpha l d i in 1969. At present, this author extends it on the whole interval between the Priabonian and the Egerian (B lpha l d i, 1979). Thus, the Kiscellian becomes without any stratigraphic reason — a hybrid stage, characterized by mesogean faunas at the lower part (equivalent to the Henisian) and Transeuropean endemic faunas at the upper part (equivalent to the Rupelian s.s.). In our opinion a regional stage of the early Paratethys would be useful only for the interval represented by the Bizuşa Beds — the Ileanda Beds = upper part of the Tard Clay (non-laminated argillites with brackish fauna) + the Kiscell Clay, which probably corresponds to zones NP 23 and NP 24 of calcareous nannoplankton.

In the lower part of the Ileanda Beds there is an intercalation with marine faunas of normal salinity - Nucula comta level (R u s u, 1972) -- whose elements are found also in the Dîncu Beds in the Gilău Area. The fossil assemblage is represented by mollusca [Nucula comta Gold f., Nuculana westendorpi (N y s t.), Angulus nysti (D e sh.), Polinices catena achatensis (Recl)] (Rusu, 1977), ostracoda [Cytheridea helvetica (Lnks.), Bairdia aff. oviformis Speyer, Loxoconcha aff. kuiperi Keij, Cytheromorpha aff. zindorfi (Lnks.), Cytherella sp., Cadona sp.)] (Olteanu, 1980), foraminifera [Dorothia textilaroides (Hantk.), Glandulina aequalis Reuss., Pyrulina fusiformis (Roemer), Nonion granosum (d'Orb.)] (Rusu, 1977), nannoplankton [Reticulofenestra ornata Müller, R. clatrata Müller, Dictyococcites dictyodus (Defl. & Fert.), Ortozygus aureus (Strad.), Transversopontis fibula Gheta, Cyclicargolithus floridanus (Roth.&Hay), Coccolithus rupeliensis Müller, C. pelagicus (Wallich), Discolithina desueta Müller) (Gheta et al., 1976; Mészáros et al., 1977). This fauna points to the Rupelian age and the nannoplankton is considered to belong to the standard zone NP 23 (Sphenolithus predistentus zone) in the lower part of the Rupelian s.s. The Rupelian s.s. is represented, in NW Transylvania, by the terminal part of the Mera Beds, the Dolheni Formation (entirely) and the basal part of the Vima Beds.

Rupelian/Chattian Boundary. So far this limit is poorly defined in Transylvania. The brackish mollusca faunas in the Gilău and Meseş area (M o i s e s c u, 1972; 1978; R u s u, 1977) seem to be useless for the tracing of the Rupelian/Chattian boundary. Because of the lack of pectinids typical of these stages, the marine malacofauna in the Preluca area (R u s u, 1977) cannot bring specifications in this sense.

Important biostratigraphic elements have been brought by the palaeoflora studies on the basis of which P e t r e s c u (1970) assigned the Cetate Beds to the Middle Oligocene and the Zimbor Beds to the Upper Oligocene.

The microfauna of the marine formations constitutes the starting point of the discussions on the Rupelian/Chattian boundary in Transylvania. The foraminifera assemblages studied by Popescu (1972, 1975) in the Vima Beds (= Gostila Beds) — a formation overlying the Ileanda Beds — allowed him to separate some zones of planktonic foraminifera. The first zone — Globigerina tapuriensis/G. tripartita zone,

whose upper limit is marked by the extinction of the index species and of forms of Globigerina gortanii (Borsetti), G. pseudovenezuelana Blow., G. selli (Borsetti) and Tritaxia szaboi (Hantken) and the appearance of the species Globigerina ciperoensis B o 11 i and Globorotalia opima opima Bolli – would belong entirely to the Rupelian. According to Popescu the bionomic threshold between the mentioned zone and Globigerina ciperoensis/G. anguliofficinalis zone, situated approximately half the thickness of the Vima Beds (which amounts to 300-400 m), corresponds to the Rupelian/Egerian boundary. The studies on nannoplankton do not ascertain this conclusion. Gheta (in Bombită et al., 1979) points out the presence of the standard zone NP 24 (Sphenolithus distentus zone) with Helicosphaera recta H a q, H. euphratis (H a q), Reticulofenestra lockeri Müller, Dictyococcites dictyodus (Defl. & Fert.), Discolithina latelliptica Báldi - Bcke, Sphenolithus distentus (Martini), Cyclicargolithus abisectus Müller up to 10-30 m above the base of the Vima Beds, followed by zone NP 25 (Sphenolithus ciperoensis zone), the basis of which is marked by the first appearance of the species Discolithina enormis Locker and Triquetrorhabdulus carinatus Martini. As known, the lower boundary of the Chattian is situated within zone NP 24 or, according to the same authors, at the base of zone NP 25, therefore in our case, towards the base of the Vima Beds.

Globigerina ciperoensis/G. anguliofficinalis zone, which includes beside the index species the taxa *Globorotalia opima opima* B o 11 i and G. opima nana B o 11 i (see P o p e s c u, 1975), would correspond only to the upper part of the Chattian, its lower part being represented by the Globigerina tapuriensis/G. tripartita zone (almost entirely) (Figure).

Considering the nannoplankton, the Chattian corresponds to the standard zone NP 25, about 200 m thick, including towards the upper part the acme of the species *Cyclicargolithus abisectus* M üller.

In NW Transylvania, in the marine and brackish psamitic facies, Chattian mollusca are found in the Buzas Beds, where it forms the Pycnodonte callifera level, Turritella and Thracia level and Amusiopecten burdigalensis level (see R u s u, 1977), and in the Zimbor Beds (Crassostrea cyathula level) (M o i s e s c u, 1972, 1978; S u r a r u, 1975; R u s u, 1977). The Chattian age of the Zimbor Beds — of brackish facies — is also supported by the discovery of a marine malacofauna at their upper part (S u r a r u, 1969), within which M é s z á r o s et al. (1975) point out standard zone NP 25 and the lower part of nannoplankton zone NN 1. Also at this level R u s u (1977) reported a foraminiferal assemblage from the Amusicpecten burdigalensis level, which attests the presence of the standard zone P 22 (Globigerina ciperoensis zone) (B l o w, 1969).

The Chattian would include an important part of the Vima Beds, having the extension of zone NP 25, most of the Buzas Beds (interval between the *Pycnodonte callifera* level and *Amusicpecten burdigalersis* level) and the Zimbor Beds with the Red Clays Horizon of the Sînmihai Beds (Figure 1).

Oligocene/Miccene Houndary(=Chattian/Aquitanian). Still debated in the world, in Transylvania this limit has been established according to P o p e s c u 's delimitation (1972) in the marine pelitic deposits and

7

Institutul Geologic al României

to Rusu's delimitation (1974) in psamitic deposits of marine and brackish facies.

In the Vima Beds the Oligocene/Miocene boundary is established at the base of the Globigerinoides primordius zone — approximately equivalent to the standard zone N 4 — marked by the first occurrence of the species Globigerinoides primordius Blow & Banner (see Popescu 1972, 1975). Approximately at the same level there occur the first typical specimens of *Helicosphaera carteri* (Wallich) and *H. ampliaperta* (Braml. & Wilcox.) (see Gheța in Bombiță et al., 1979), which would mark the base of zone NN 1 (Triquetrorhabdulus carinatus zone), considered of Miocene age.

In psamitic deposits this limit is established on the basis of the mollusca fauna at the base of the *Callista lilacinoides* level in the Buzaş Beds (marine formation) and immediately under the *Crassostrea aginensis* level in the Sinmihai Beds (brackish member) (see R u s u, 1974, 1977). Therefore, the Oligocene/Miocene boundary is situated under the Coruş Beds — Larger Pectens Horizon which marks the first Miocene transgression in Transylvania — but not at the base of the mentioned horizon as Popescu mentioned in 1972. The stratigraphic conception presented in this paper is at present adopted by most of [researchers who study the Transylvania Basin.

### REFERENCES

- Báldi T. (1979) Change of Mediterranean (? Indopacific) and boreal influence on Hunga, rian marine Molluscfaunas since Kiscellian until Eggenburgian times; the stage Kiscellian. Ann. Geol. Pays. Hellen. Tome hors ser. fasc. I, p. 39 - 49, Athenes.
- Bombiţă G., Gheţa N., Iva M., Olteanu R. (1975) Éocène moyen-supérieur et Oligocène inférieur des environs de Cluj. In "Guide micropal. Mésoz. Terl. des Carpates Roum." Inst. Géol. Géophys., p. 163 - 174, Bucarest.
  - Anastasiu N., Gheța N., Iva Mariana, Jipa D., Moisescu V., Olteanu R., Popescu B., Popescu G., Rusu A., Tăutu Elena, Țicleanu N. (1979) Report. The archives of the Institute of Geology and Geophysics, Bucharest.
- Gheta N., Popescu B., Leu M. (1976) Reticulofenestra ornata Müller, a marker Nannoplankton species in the middle Oligocene. Rev. Roum. Géol. Géophys. Géogr. (Géologie), 20, 1, p. 143 – 145, Bucharest.
- Iva M., Rusu A. (1982) La limite Éocène /Oligocène en Transylvanie d'après les Foraminifères planctoniques. D. S. Inst. geol. geofiz. LXVI/4 (1979), p. 157 – 180, Bucarest.
- Martini E., Moisescu V. (1974) Nannoplankton-Untersuchungen in oligozänen Ablagerungen zwischen Cluj und Huedin (NW Siebenbürgisches Becken, Rumänien). N. Jb. Geol. Paläont., Mh. H 1, p. 18 – 37, Stuttgart.
- Mészáros N., Lebenzon C., Ianoliu C. (1973) Limita Eocen-Oligocen în dealul Hoia din Cluj, stabilită cu ajutorul nannoplanctonului. Stud. Univ. Babeş-Bolyai, ser. Geol.-Miner. 1, p. 61 – 69, Cluj.
  - --, Lebenzon C., Ianoliu C. (1974) Trasarea limitei Eocen-Oligocen la Mera cu ajutorul Nannoplanctonului. Stud. Univ. Babeş-Bolyai, ser. Geol.-Miner. 2, p. 44 - 52. Cluj.

236
- , Lebenzon C., Suraru N., Ianoliu C. (1975) Die mit Hilfe des Nannoplanktons durchgeführte Abgrenzung des Oligozäns im Tale des Almaş (Nord-Westen des Siebenbürgen-Beckens, Rumänien). VI-th Congr. Reg. Comm. Medit. Neog., Stratigr., p. 129-137, Bratislava.
- , Galcenco V., Fabian C. (1977) Nannoplanctonul depozitelor paleogene de la Cormeniş (est de Jibou) și semnificația lui stratigrafică. Sl. cerc. geol. geofiz. geogr. (Geologie), 22, p. 155 - 160, București.
- Moisescu V. (1972) Mollusques et Echinides stampiens et égèriens de la région de Cluj-Huedin-Românasi (N-O de la Transylvanie). Mém. Insl. Geol. XVI, 152 p., Bucarest.
  - (1978) Biostratigrafia și corelarea depozitelor oligocene din regiunea Cluj (Transilvania de N-W). D. S. Inst. geol. geofiz. LXIV/4, p. 217 - 281, București.
- Olteanu R., Popescu B. (1973) Contribuții paleontologice și sedimentologice privind evoluția ostracodelor în Eocenul de la vest de Cluj. Sl. cerc. geol., geofiz., geogr., seria Geologie t. 18, nr. 1, p. 245-260, București.
  - (1977) Stratigraphic and Micropalaeontologic Study of the Eocene-Oligocene Deposits in the Cluj-Mera-Săvădisla Area. Thesis of doctor's degree. "A. I. Cuza" University, Iassy (In Romanian).
  - (1980) Evolution de la communauté d'Ostracodes dans l'Oligocène du NW de la Transylvanie. Rev. Roum. Géol. Géophys. Géogr. (Géologie), 24, p. 177 198, Bucarest.
- Petrescu I. (1970) Considerații generale asupra florelor oligocene din N-W Transilvaniei. Stud. Univ. Babeș-Bolyai, ser. Biol. 2, p. 47 - 52, Cluj.
- Popescu B., Gheța N. (1972) Nannoplanctonul calcaros din Orizontul marnelor cu briozoare de la vest de Cluj (Bazinul Transilvaniei). D.S. Inst. geol. LVIII/3, p. 129-- 140, București.
- Popescu G. (1972) Biostratigrafia depozitelor oligo-miocene de la sud de Preluca, pe bază de foraminifere planctonice. D. S. Insl. geol. L.VIII/3, p. 105 - 127, București.
  - (1975) Études des Foraminifères du Miocène inférieur et moyen du Nord-Ouest de la Transylvanie. Mém. Inst. Géol. Géophys. XXIII, 121 p., Bucarest.
- Rusu A. (1972) Semnalarea unui nivel cu Nucula comta în bazinul Transilvaniei și implicațiile lui stratigrafice. D. S. Insl. geol. LVIII/4, p. 265 - 282, București.
  - (1974) Stratigraphy of the Oligocene Deposits in the Treznea-Hida-Poiana Blenchii Arca (NW Transylvania). Thesis of doctor's degree. University of Bucharest (in Romanian).
  - , Drăgănescu A. (1976) Facies-zoned carbonate sedimentation at the time of Hoia Limestone (upper Tongrian) in N-W Transylvania (Romania). An. Inst. geol. geofiz. XLVIII, p. 141 - 169, Bucharest.
  - (1977) Stratigrafia depozitelor oligocene din nord-vestul Transilvanici (regiunea Treznea-Hida-Poiana Blenchii). An. Inst. geol. geofiz., LI, p. 69 - 223, Bucureşti.
- Şuraru N. (1968) Über eine vollmarine Fauna der Zimborer Schichten im unteren Becken des Almaş Tales. I. Slud. Univ. Babeş-Bolyai ser. Geol. Geogr. 2, p. 45 – 56, Cluj.
  - (1975) Faziostratotypus : Zimbor-Sinmihaiu Almaşului, nordwestlichen Teil des Transylvanischen Beckens, Rümänien. In "Chronostratigraphie und Neostratotypen" Miozän OM. Egerien, V, p. 169 176, Bratislava.

#### QUESTIONS

J. Mitrović. In the lower and upper levels with Scutella subtrigona there are also other genera of echinits. In what types of deposits does this assemblage occur?



9

	TOTICITY	
<b>A</b> .	RUSU	

Answer. In the two levels with Scutella there also occur echinits belonging to the genera Diplosalenia, Coelopleurus, Echinolampas, Schizaster and Euspatangus. This faunal assemblage is encompassed in bioclastic limestones, arenaceous limestones and calcareous sandstones.

M. Nosovsky: 1. Dr. A. Rusu presented very interesting data on the basis of which a correlation can be made not only within the Carpathian area but also in the Euxino-Caspic area. This is possible due to a brackish fauna found out in Transylvania, which includes *Corbula sokolovi* and *Cardium serogosicum*, first described in the south of Ukraina and then in other parts in the south of the U.S.S.R.

2. As regards G. Bizon and C. Müller's report (1977) on the correspondence of the nannoplankton zone NP 25 with the planktonic foraminifera zone N 4 don't you think that the nannoplankton reported from the Buzaş Beds prove the appurtenance of these beds to the Lower Miocene?

Answer. The correlation of the planktonic foraminifera zones with the nannoplanktonic zones shown on the table had been made according to the evidence found in Transylvania. It is possible that here *Globigerina primordius* – index species for zone  $N_4$  at the basis of which the Oligocene -Miocene boundary has been establishd – might occur later on and consequently the real limit is beyond it. In this case a larger section of the Buzaş Beds would belong to the Miocene; however, their lower part belongs undoubtedly to the Oligocene as indicated by the other groups of organisms, the nannoplankton included.

It is to be mentioned that the correspondance of the zone N 4 with the zone NP 25is only partial at Bizon and Müller, at least in the paper of 1979 the whole zone NP 25 is assigned to the Oligocene.

- GR

Institutul Geologic al României

10.

# BIOZONEN VON ORGANISCHSKELETTINGEN MIKROPLANKTONS IN DEN PANNONISCHEN SCHICHTEN UNGARNS¹

#### VON

#### MARIA SÜTÓNÉ SZENTAI²

In den pelitischen Ablagerungen der pannonischen Schichten kommen Überreste von organischskelettigen Mikroplanktons /Algen/ stellenweise massenhaft vor. Bedeutend sind besonders die im unteren Teil der Formationsgruppe verbreiteten Dinoflagellaten, da ihre Ausbildung, ihre sehr schnelle Verbreitung und schnelle Selektierung nachher, wichtige Veränderungen der ökologischen Verhältnisse innerhalb einer kurzen erdgeschichtlichen Zeiteinheit festhält.

Mit der Beschreibung von Dinoflagellaten befasste sich zuerst Nagy Lászlóne, dann gab in Rumänien N. Baltes Bericht über die mit der ungarischen identischen Gemeinschaft und beschrieb neue Arten. Nachher arbeiteten L. E. Stover und W. R. Evitt eine neue Methode der Bestimmung der vorpleistozänen Dinoflagellaten aus, auf Grund dessen man mit einheitlichen Gesichtspunkten diese Gemeinschaft bestimmen konnte.

Die bearbeiteten Bohrungen befinden sich am Fuss der Cserhát-Mátra- und Bükk-Gebirge, auf dem Gebiet zwischen den transdanubischen Mittelgebirgen und dem Mecsek-Gebirge, sowie südlich von dem Mecsek-Gebirge (Abb. 1).

Innerhalb der lithostratigraphisch begrenzten pannonischen Formationsgruppe (Å. Jámbor, 1980) unterschied ich fünf Biozonen. Die Grenze der Biozonen ist nicht immer gleich mit der Grenze der Lithofazies-Einheiten oder der Faunengemeinschaften.

Die Untersuchung der litoralen und beckeninneren Schichtenfolgen bestätigte die weite horizontale Verbreitung dieser Mikrofossilien Ihre vertikale Verbreitung wird jedoch durch die Veränderung der Umweltsfaktoren (Salzgehalt – Temperatur – pH) begrenzt.



¹ Vorgetragen am 12. Kongress der Karpato-Balkauischen Geologischen Assoziation, 8 – 13 September, 1981, Bukarest, Rumänian.

² Ungarn.



Abb.1. - Platz der untersuchten Bohrungen und das Alter der Schichten.

### Biozonen von organischskelettigen Mikroplanktons

## Biozone Pleurozonaria ultima

Auf Grund der Lithofazies, sowie mit Untersuchung des Makrofaunas kann man bei der Schichtenfolge von Zala die Zugehörigkeit zu den pannonischen Schichten beweisen (À. Jámbor, 1980). Ich untersuchte diese Schichtenfolge in Transdanubien in der Umgebung von Tengelic (ihre Molluskenfauna ist das Limnocardium praeponticum auf Grund der Untersuchungen von Korpásné Hódi M.). Charakteristisch für ihr organischskelettiges Mikroplankton ist das massenhafte Vorkommen einer einzigen Art, der Pleurozonaria ultima n. sp. Ausser dieser Art fand man nur 1-1 schlecht bewahrte Cymatiosphaera und den Typ Spirogyra 3c. Die Faunengemeinschaft deutet auf eine brackige, euxine Fazies, ähnlich den Schichten von Tard mit Pflanzen- und Fischüberresten, wo die Art Pleurozonaria minor (H utter) Rákosi massenhaftes Vorkom-

Oberhalb der Mergelschichtenfolge von Zala sind die Dinoflagellaten für die Tonmergelschichtenfolgen von Csákvár und Drava charakteristisch. Die makroskopisch gleich aussehende Tonmergelschichtenfolge kann man in zwei Biozonen gliedern. Die untere kann man mit der Art Spiniferites bentori, die obere mit der Ausbildung der Art Spiniferites validus kennzeichnen.

### Biozone Spiniferites bentori

In dieser Biozone (Abb. 2, 3) findet man mehrere, morphologisch wechselvolle Variationen der Art Spiniferites bentori (Rossignol, 1964) Sarjeant, 1970. Im unteren Teil der Biozone trifft man häufig die zonenanzeigende Art und ihre dimorphe Form Gonyaulax digitale (Pouchet) Kofoid 1911; im oberen Teil zusammen mit dieser art die Pontiadinium Arten (P. pecsváradensis, P. obesum, P. inequicornutum) und Formen aus dem Prevalvat Stadium. Im oberen Teil der Biozone wird zusammen mit der Ausbildung der Pontiadinien die mit 15-20 Mikron grössere Form der Art Gonyaulax digitale häufig.

Die zonenanzeigende Art entstand im unteren Teil der Schichten mit Congeria banatica. Ihre sehr schnelle Verbreitung mit morphologisch



Abb.2. – a, Spiniferiles benlori (Ross.) Sarjeant; b – d, Gonyaulax digilale (Pouchet) Kofoid; e-f, Pontiadinium pēcsváradensis n. sp., 600-fache Vergrösserung.

wechselvollen dimorphen Formen zeigt den für die Art optimalen Lebensraum in den Schichten mit Congeria cejžeki.

Die auch heute lebenden und während ihrer Ontogenese zustande gebrachten planktonischen und bentonischen dimorphen Formen der zonenanzeigenden Algenhat man identifiziert (D. Wall und B. Dale, 1970). Die Identifizierung der dimorphen Formen der fossilen Art ist wichtig, weil unter Umständen das Stadium der schlafenden Spore oder das mit Theken und Planktonen vorkommt, abhängend davon ob die Ausbildung in der Nähe der Küste oder entfernt davon geschah. Die dimorphen Formen findet man in den seichtwässerigen, Küstensaum-Fazies zusammen, in den vom Ufer fernen Ausbildungen ist die Form mit Theken und Planktonen die häufigere. Mit der Identifizierung der bentonischen und planktonischen Formen kann man auch die heteropischen Fazies identifizieren, bei häufiger Probenahme kann man aber in den vertikalen Profilen auch die Oszillationserscheinungen gut verfolgen.

16 — c. 50



Abb.3. – a-b, Pleurozonaria ultima n.sp. Tengelic-2.663,9 – 665,0m. 1000 x; c, Spiniferites bentori (Rossignol, 1934) Sarjeant, 1970. Szirák-2. 439,2 – 439,5 m. 600x; d, Gonyaulax digitale (Pouchet) Kofoid, 1911. Szirák-2.439,2 – 439,5 m. 600x; e, Pontiadinium pecsváradensis n. sp. Pécsvárad – 15.63,0 – 64,0 m.600x; f, Pontiadinium sp. Prevalvát stadium. Pécsvárad – 15,65,0 – 66,0 m.600x; g, Gonyaulax digitale (Pouchet) Kofoid, 1911. Szirák-2 373,0 – 383,0m.600x.

## Biozone Spiniferitis validus

Charakteristisch für diese Biozone (Abb. 4) ist die Ausbildung der Art Spiniferites validus n. sp. und die Dinoflagellaten mit verdickten Theken, mit den Arten Impagidinium globosum n. sp., I. spongianum n. sp., Tectatodinium pellitum Wall. Ausser den genannten sind in der Biozone noch häufigere Arten Romanodinium areolatum Balteş, Spiniferites paradoxus Cookson et Eisenack, Chytroeisphaeridia tuberosa n. sp., seltenere Pontiadinium inequicornutum (Balteş). Formen 29.



Abb.4. – a, Spiniferites validus n.sp. Karácsond-1/8.454,0 – 474,0m. 600x; b, Romanodinium areolatum Baltes, 1971. Szirák-2. 225,8 – 231,5m.600x; c, Impagidinium globosum n.sp. Szirák-2. 185,1 – 187,4 m.600x; d, Impagidinium spongianum n.sp. Szentlörinc-XII.376,3 – 381,5 m. 600x; e, Tectalolinium pellitum Wall, 1967. Szirák-2. 194,7 – 195,6 m. 600x.

und 139. des *Pontiadinium*. Ich beobachtete bei der zonenanzeigenden Art mehrere Variationsformen mit verschiedener Grösse und mit verschiedener Länge der Anhängsel.

In der Begleitgemeinschaft der zonenanzeigenden Art gibt es auch einige Exemplare der Art *S. bentori*, besonders in den Fazies des Beckeninneren. Die dick gewordenen Formen mit Theken der im unteren Teil der Biozone, noch häufigen Dinoflagellaten, zeigen, dass sie trotz ihrer Dominanz schon nicht unter optimalen Verhältnissen lebten. Die Veränderung der ökologischen Verhältnisse wird auch durch das Erscheinen der Süsswasseralgen (*Mougeotia laetevirens*, *Cooksonella circularis*, *Spirogyra* Typ 1). angedeutet, die sich später zur Zeit der Bildung der lignitflössigen Schichtenfolge verbreiteten.

Die zonenanzeigende Art kommt am Fusse des Mátra-Gebirges zusammen mit Kaladacna steindachneri, Limnocardium mayeri (Bartha, 1971) vor, bei Tengelic mit der Fauna Congeria zagrabiensis (Korpásné Hódi M.) vor.

### Die Dinoflagellata – Zygnemataceae Zwischenzone

Diese Zwischenzone ist in der beckeninneren Fazies der Schichtenfolgen von Somlo und Tihany charakteristisch. In diesen sandigeren Schichten bilden die Dinoflagellaten und die Jochalgen der Süsswässer keine horizontal identifizierbare Schicht. Die Selektion der Dinoflagellaten begann schon in der Biozone S. validus. Ihr massenhaftes Aussterben überlebten nur einige Arten, die Art Impagidinium spongianum, I. globosum und ein Teil der Pontiadinien. Diese Arten können in einigen Proben der brackig — süsswerdenden Schichten noch vermehrt auftreten.

### Biozone Mougeotia laetevirens

In den Süsswasserteichen vermehrten sich stellenweise massenhaft die Jochalgen (Mougeotia, Closterium, Spirogyra), sowie die Algen Botryococcus und Cooksonella.

Die zonenanzeigende Art vermehrte sich in grossen Mengen in Zentral-Transdanubien (Polgárdi, Tab, Nagyszékely), wo im sehr kalkhaltigen Wasser ein optimaler Lebensraum für die Art sich gebildet hatte. Ihre gut erhaltene, dickwändige Exemplare findet man aber überall in den lignitflössigen Pannonschichten und in ihren heteropischen Fazies. Von den Jochalgen beobachtete ich die Art *Closterium kützingii* B r éb is s on in den südlich von dem Nördlichen Mittelgebirge abgeteuften Bohrungen, in Transdanubien fehlte diese Art. In den untersuchten Profilen war die Dominanz der Alge *Mougeotia laetevirens* in entgegengesetzter Beziehung zu der Häufigkeit der Algen *Botryococcus braunii* Kützing und *Cooksonella circularis* N agy. (siehe Tabelle).

### Die vertikale und horizontale Verbreitung der Dinoflagellata Biozonen

Die am meisten charakteristische Form der Dinoflagellaten Gemeinschaft der Pannonschichten ist die Art Spiniferites bentori (Ross.) Sarjeant, Man findet sie zusamnen mit den in den Meeren typischen Hys-



#### BIZONEN VON ORGANISCHSKELETTINGEN MIKROPLANKTONS

245

#### TABELLE

Lithostrati- graphische Aufteilung (À. Jám- bor, 1980)		strati- ische eilung Jám -	Mollusken (Bartha, Hódi, Szćles Straus,	Organischs kelettige Mikro- planktons		Vertikale Verbreitung der organischskellettigen Mikroplanktons		
		or, 1980)	Kro- lopp)	Domi- nanz	Bio- zone			
RMATIONSGRUPPE	Unterpannonisch Oberpannonisch	Zone Torony	Unio wetzleri	Süsswasser – Mikro planktons	Mougeolia laelevirens	averänderung rung Aussüssung Verbreilung der Zorennelgogene		
		onen Somló-Tihany	Congeria balato- nica	Selektion	wischenzone Dinofla- cllata-Zygnematacege	<ul> <li>L. minor</li> <li>P. minor</li> <li>I. minor</li> <li>I. minor</li> <li>I. allor</li> <li>I. allor</li> <li>I. allor</li> <li>I. ansgression Kims</li> <li>Salzgehaltverminder</li> <li>Selektion der</li> <li>Dinofhacellaten</li> </ul>		
FO		Z		Dino	03 17	L W Derpannon Unterpannon		
PANNONISCHE		C. nuðu- Zome Dräva Zome Dräva Zome Dräva Zome Csákvár Some Csákvár issenhafte Dinoflagellaten Spiniferites Spiniferites S. va- tidus	C. ungu- lacaprae	n der	S. va- lidus	adium tus lickte I lickte I ior cipirogyrc spirogyrc ima, bens-		
			benlori Pontiadinium Prevalvat St S. verdi S. verdi verd verdi verdi Subtropischa glichenes Kil optimaler Le raum der Alg Typ benlori					
		Zone Zala	Kleines Limno- cardinm	Pleure naria	ozo- ultima	d d d d d d d d d d d d d d d d d d d		

#### Korrelationstabelle der vertikalen verbreitung der organischskelettigen microplanktons, gesteinfazies und molluskenfauna

trichosphaeriden der Salzwässer in den Tabiano Schichten Norditaliens (D. Habib); in den Quartärschichten Israels (Rossignol, 1962); in den postpleistozänen Schichten Englands (R. Harland) und in den Quartärschichten der Bohrungen im Karibischen Meer (D. Wall).

Einige Formen ihrer Begleitgemeinschaft kennt man aber schon aus der oberen Kreide. Die Art Spiniferites paradoxus wurde von Co-

okson und Eisenack in den Sedimenten der oberen Kreide Australiens beschrieben, die Art *Pontiadinium inequicornutum* (Baltes) Stover et Evitt fand ich auch im Sand des oberen Oligozäns (Bohrung Budafok-1.).

Die Alge S. bentori bildet in den Tabiano Schichten Norditaliens, in den Schichten des unteren Pontien Rumäniens und in den Schichten mit C. banatica Ungarns das älteste Vorkommen der Art.

Charakteristisch für ihr Vorkommen in Ungarn ist, das man sie in den Schichten mit C. banatica zusammen mit Nannoplanktons der Salzwässer und Schwachsalzwässer findet, die eine entgegengesetzte Dominanz haben. In den Schichten mit C. czjzeki ist diese morphologisch mannigfaltige Algengemeinschaft nur von wenigen Nannoplanktons begleitet, sie kommt mehr mit Kalk-und Kieselschwammnadeln vor. (Untersuchungen von J. B on  $\acute{a}$  und M. G  $\acute{a}$  l).

Die Art lebt heute in den Lagunen des Karibischen Meeres bei einem tropisch - subtropischen Klima in normalem Salzwasser und bildet 4,5 % aller Planktons (D. Wall und B. Dale, 1968). Versuche mit der heute lebenden Art zeigten, dass sie auf die Veränderung der Temperatur empfindlich ist, die Augaben über ihre Salztoleranz sind aber nicht klar.

Die im unteren Teil der Pannon-Stufe massenhaft vermehrte Alge S. bentori lebte — ihre heutigen ökologischen Verhältnisse in Betracht nehmend- bei einem sich vermindernden Salzgehalt und subtropischausgeglichenem Klima. Die Ausbildung der Art S. validus, sowie die Überverdickung einzelner Arten mit Theken geschah gleichzeitig in dem Beckenrandfazies, sowie in dem beckeninneren Fazies ober der Biozone S. bentori. Unter den Umweltsfaktoren konnte ausser der Verminderung des Salzgehalts die Temperaturveränderung entscheidend sein, die die morphologische Veränderung und die schnelle Selektion der Dinoflagellaten verursachen konnte. An der Grenze der zwei Biozonen zeigen hauptsächlich die autochtonen Algenüberreste die Klimaveränderung. Die Art S. validus und ihre Begleitgemeinschaft bilden jenes biologische Objekt, dessen Ausbildung an der Grenze der unteren und oberen Pannonschichten auch die Zeitzonengrenzen zeigt.

Der Veränderung der Dinoflagellaten-Gemeinschaften folgt verspätet die Veränderung der Kontinentalfauna. Auch der Umweltsanspruch der einzelnen biostratigraphischen Einheiten, Faunen und Floras ist verschieden. Ihre Korrelation ist nur dann möglich, wenn wir auch ihre unterschiedlichen ökologischen Ansprüche in Betracht nehmen.

Neu ist die Untersuchung der Dinoflagellaten, die Ausarbeitung der Gemeinschaften ist noch in Gange. In der Zukunft wird nach der Untersuchung der beckeninneren Schichtenfolgen vollkommener die Erkennung der wechselvollen Reihe der dimorphen Formen und die detailliertere Aufteilung der unterpannonischen Schichtenfolge.

#### DISCUSSIONS

N. Baltes: There are known the difficulties in the horizontation and especially in the correlation of Pannonian beds in the Pannonian Depression with their equivalents in the extra-Carpathian regions (Carpathian Foredeep and Moesian Platform). Therefore.

246

8:

in my opinion this paper is very important as it brings new contributions and constitutes a practical tool in the knowledge of the Pannonian and generally of the whole evolution of the Pannonian Basin.

In this way I should like to point out the fine work of dr. Sütóne Szentai concerning the organic microplankton (Dinoflagellates included) and particularly two main aspects should be mentioned: 1. the taxonomic one – some new species have been created – and 2. the characteristic stratigraphic levels on Dynocysts and their sharp correlation.

Of course there are also other problems which are to be solved and I am sure that the author will do her best to solve them.

Once again many congratulations to dr. Mária Sütóne Szentai and new other papers like this one.

P. Stevanović: Wir müssen heute diese schöne Funde so auffassen, dass sie nicht nur dem Pannon sondern auch dem Pont angehört. Angefangen von der Molluskenzone Congeria zagrabiensis ist schon Pont, Schichten mit Congeria czjźcki sind noch Pannon s. slr.





Institutul Geologic al României

# NEWER KNOWLEDGE ON THE STRUCTURE AND STRATI-GRAPHY OF QUATERNARY SEDIMENTS AT THE ZITNY OSTROV ISLAND IN THE DANUBE LOWLAND, CZECHOSLOVAKIA¹

BY

## E. VAŠKOVSKÁ², I. VAŠKOVSKÝ²

The Zitny ostrov island on the territory of Czechoslovakia extends in the southwestern part of the Danube lowland between Bratislava and Komárno; it is bordered by the Danube and Little Danube River. The areal extension of the territory is around 1600 sq. km. (Fig.). The region of the island forms an almost ideal young riverain plain (dejection cone) formed by activity of the Danube. The total inclination of the region is from NW to SE. The highest points of the surface are near Bratislava of 134 m altitude and the lowest ones near Komárno of around 107 m altitude. The surface proper of the island is complicated by alternating flat and wide elevations and depressions and also by remnants of the hydrographic system (meanders and arms of the Danube and Little Danube). of drift sands of less areal extension are also found here. With Sheets geomorphological regional subdivision of the Zitný ostrov island are dealing more in detail Luknis, Mazur (1959), Vaškovsky, Vaškovská (1977), Mazúr, Lukniš (1980).

In the sense of geological-tectonic subdivision of the Danube lowland (A d a m, D l a b a č, 1961) the region of the Žitný ostrov island takes up the essential part of the so-called central depression, the island part of which is often designated as the "Gabčikovo Depression" with the centre of sinking near Gabčíkovo. This depression is dish-shaped, its pre-Neogene substratum, according to the newer conception and to available bases (F u s a n, B i e l y, P l a n č á r, 1979), is formed in direction to Bratislava by crystalline schists by the Paleozoic in the area of Komárno and by the Mesozoic of the Hungarian Midmountains immediately near Komárno.

Thickness of Neogene-Quaternary sediments, forming the filling of the Gabčíkovo Depression, is not equal. Its greatest thickness( according to interpretation of geophysical measurements) is up to 5400 m near



¹ Paper presented at the 12th Congress of the Carpatho-Balkan Geological Association, 1981 September 8-14, Bucharest, Romania.

² Dionyz Štur, Institute of Geology, Mlynská dolina 1,809 40 Bratislava, Czechoslovakia.



🖵 Institutul Geologic al României

Gabčíkovo; from there in NW direction the pre-Neogene substratum is rising quite equally, filling thicknesses decrease, changing to step-like near Bratislava and practically wedging out at the borders with the Little Carpathians. Thickness of the sedimentary filling decreases also in direction east of Gabčíkovo; in boreholes near Komárno its thickness is 1224 -1141 m. The sedimentary filling of the Gabčíkovo Depression, beginning with the Badenian gradually up to present, underwent a complicated geological development.

So far there is no more detailed knowledge about stratigraphy and lithofacial composition of Neogene sediments at the Zitny ostrov island, as no deep boreholes drilling through these sediments in their full thickness in the Gabcíkovo Depression were sunk here. The deepest boreholes, are only near Dunajská Streda (DS-1) and Čalovo (Č-1); these, however, were finished in the Upper Pannonian — G a z a et al. (1972), Ć e r m á k, G a z a (1973), H o l e c z y o v á, G a z a (1972). The total thickness of the Neogene at the Žitny ostrov island was drilled through by a borehole near Komárno (P a g á č, 1966). Regarding this fact our description of Neogene sediments is based especially more on several deep boreholes in close neighbourhood of the Žitny ostrov island (K o l á r o v o, H om o l a , 1966; D i a k o v c e , H o m o l a, 1960) and others.

The presence of Badenian and Sarmatian sediments in the Gabcikovo Depression (thickness up to 1000 m) is supposed by A d a m, D l a b a c (1969). The Badenian was directly encountered in borehole Komárno-1. The Pannonian sediments in the marginal part of the depression are lying transgressively on older formations of the pre-Neogene substratum and in the central part on the Sarmatian. Most often they are formed by monotonous greenish-grey to grey, slightly fine sandy calcareous clays of quiet deep sedimentation (thickness up to 2000 m). In the Pontian the sedimentation of calcareous clays of light-greenish-grey and light-grey colour, prevailingly highly sandy, was predominating. Thickness of this sedimentation is up to 1000 m. Dacian sediments are divided here into the lower variegated series and upper coal series. Their thickness attains up to 1500 m. The Dacian underlies the Quaternary sediments in the eastern part of the Žitný ostrov island near Klizská Nemá, Kameničná, Nová Stráž. The Upper Pliocene (Romanian) is formed by the so-called "Gabcíkovo sands" at the Zitny ostrov island. Their occurrence was pointed out already earlier by Janáček, who designated them as "regressive sands" and assigned them to the uppermost Pontian in the year 1966-1966 a and 1966 b. Later (in the years 1969, 1971), this author admitted their assignment to the Upper Pliocene. These sands are spread in the deepest part of the Gabčíkovo Depression, then to the west as far as Samorin and Rajka in Hungary, to the east or SE to Calovo, where they are bordered by a tectonic line trending SW-NE. Thickness of the "Gabčíkovo sands", as up to present boreholes show, is 250 to 400 m, so that their base is about 650 m below the surface.

The main component of the sequence of the "Gabčíkovo sands" are sands. In general, medium- to coarse-grained sands with transition into fine pea-gravels predominate. Characteristic of these sequences are also layers of calcareous clays. Their thickness attains 10 to 40 m and they may be traced well at greater distances. The colour of calcareous clays is most

251

:3

often light-grey to grey and light-greenish-grey. The colour of gravels and sands is usually grey to greenish-grey.

The "Gabčíkovo sands" are poor in fossils. So far only B restenská (1966 a, b) was successful in finding four species and nine individuals of ostracods from the deepest part in the area of the Gabčíkovo Depression near Vojka (in boreholes 1/I and 2/I) and also near Gabčíkovo (in boreholes 1/III, 2/III). In this assemblage, there are Candoniells with Candoniella marcida, Candoniella schubinae, Candoniella albicans and Hyocypris sp. Finds of molluse have not been known so far, only in borehole OV-11 at depths 367 - 381 m and 530 - 540 m. B r e s t e n s k á (1966 b) distinguished branches and leaves of coniferous Glyptostrobus europaeus (B r g n t.) Here P a c l t o v á (1971) also found an Upper Pliocene assemblage in the pollen spectrum from borehole HVZ-3 (Sequoia, Taxodium, Sciadopytis, Liquidambar, Cedrus, than Carya, Juglans, Tsuga, Castanea and Pinus haploxylon).

It will be possible to correlate stratigraphically the "Gabčíkovo sands" with the so-called Kolárovo Beds, which are found in the wider area of the Zitny ostrov island (Kolesík 1949, Dlabač 1959, Buday 1959, Buday et al. 1962, 1968 etc.); however, still more data will be necessary for it, requiring further studies.

The Quaternary sediments unequally cover the whole surface of the Žitny ostrov island; they are characterized by unequal thicknessat the margins 8 - 12 - 20 m and in the central part up to 340 m or even more. Several authors were dealing with their study (Horusitzky, 1908, 1909; Timkó, 1904; Zoubek, Koutek, 1936; Cepek 1938; Szadecky-Kardoss, 1938; Hromádka, 1956; Lukniš, Mazúr, 1959; Dlabač, 1960; Buday et al., 1962, 1968; Janáček, 1966, 1967, 1969, 1971; Ložek, 1955; Krip-pel, 1962, 1963; Brestenská, 1966, 1967, 1977; Plande-rová, 1966, 1967, 1977: Schmidt, 1977; Hornis, 1977; Halouzka, Minaříková, 1977; Minaříková, 1966; Vaš-kovská, 1977; Vaškovský, Vaškovská, 1977, and others). On the basis of up to present more detailed lithogeochemical, mineralogical-petrographical investigations, several paleontological finds and also several data of paleomagnetism (willingly provided by P. Pagáč from the Slovak Academy of Sciences in Bratislava) we distinguish the following genetic types of Quaternary sediments: A) Lacustrine or lacustrine-fluvial sediments; B) Fluvial sediments; C) Sediments of the surficial cover (with specific genetic types of sediments and soils).

A) Lacustrine or lacustrine-fluvial sediments. Extension of these sediments in the region of the Zitny ostrov island is roughly bound to its deepest (depression) part, so that it coincides, to a considerable extent, with extension of the above-mentioned so-called "Gabčíkovo sands". They are deposited approximately in depth intervals from 95 to 160 m below the surface. According to HGV boreholes their thickness will be probably more than 200 m. The lacustrine or lacustrine-fluvial sediments in the Žitny ostrov island, as results from the already earlier descriptions by J a n á č e k (1968, 1969, 1971) mainly, however, on the basis of our

Institutul Geologic al României

evaluation of HGV boreholes, are composed of sands and fine-grained gravels. Typical for these sediments is, however, the prevalence of clayeyloamy layers.

The sands found in lacustrine or lacustrine-fluvial sediments are fine, more often medium to coarse-grained, polymict, in places micaceous, of grey to light-grey colour. The pebbles are well worked up. In the pebble component of these sediments M in a říková (1966) has pointed out that quartzites and quartz are predominating 70 - 80%. In the residue are mostly present mainly silicites (20% of pebble component). The silicites are brown, ochroous; less represented are glauconite sandstones. Pebbles of limestones and dolomites are sporadical. Unlike the higherlying fluvial sediments, no crystalline schists and granites are observed in lacustrine sediments. Their occurrences are seldom around 1%.

In the sandy component of lacustrine or lacustrine-fluvial sediments quartz is predominating in the area under study, the admixture is formed by silicites and feldspars. Working up of grains of the sandy fraction is little; the grains are mostly angular, less subangular and half-rounded.

Clayey-loamy sediments are of important position in lacustrine or lacustrine-fluvial sediments at the Zitny ostrov island. Their layers attain thickness of 5-10 m on an average, maximum 30 m. Visible are sandy to highly sandy clays. They are characterized by grey, brownish-grey, greenish-grey and light-grey etc. colours. We studied these layers more in detail in the following boreholes and depth. In borehole HGV-2 (depth 187, 192, 196, 213 and 233 m), borehole HGV-4 (162, 173, 176, 322 m), borehole HGV-6 (196 an 198 m), borehole HGV-8 (216 m), borehole HGV-9 (135, 164 and 172 m).

The complex litho-geochemical study makes it possible essentially to distinguish two types of lacustrine or lacustrine-fluvial clayey sediments: a) of so-called basal clays and b) of clay layers with more frequent alternation with layers of sands. The basal clays are characterized by greater thicknesses; we follow them mainly in the lower parts of the sequence (e.g.in borehole HGV-4 at depth of 187-233 m, then in borehole HGV-4 depth 159 - 176 and 322 m, in borehole HGV-8 at depth of 212 - 220 m etc.). The second type, characterized by lesser thicknesses of clay layers and more frequent alternation with sands, can be seen for example, in boreholes HGV-6 at depth of 194-234 m, HGV-9 at depth of 161 - 174 and borehole HGV-11 at depth of 69 - 72 m.

The distinguished two types of clayey sediments in lacustrine or lacustrine-fluvial sequences differ not only in thickness but also in lithological-geochemical properties.

The basal clays in lacustrine or lacustrine-fluvial sediments at the Zitny ostrov island represent mono-, bi- and polydispersive loams with granulometric maxima in fractions 0.05 - 0.01 mm, then 0.25 - 0.1 and < 0.002 m; they are medium-sorted to sorted, characterized by a variable content of  $CaCO_3 = 1.2 - 17.5$  %, are weakly humose (humus up to 0.3 %), active pH reaction in  $H_2O = 8.4 - 8.95$  (or weakly alkalic to alkalic) exchangeable pH in KCl = 7.4 - 7.8. An interesting particularity of these clayey sediments is that with the commonly used dispergator (6% Na₄P₂O₇) they induce peptization instead of dispergation.

The second type of clayey sediments distinguished in lacustrine or lacustrine-fluvial sequences at the Zitny ostrov island is characterized mainly by a low coefficient of microaggregation (K micr 5-9); they are polymodal with granulometric maxima in fractions 0.25 - 0.1; 0.05 - 0.01 and < 0.002 mm. The content of CaCO₃ also varies within the range of 2.3 - 17.9%. They are characterized by higher activity of pH in H₂O = 8.6 - 9.0.

The difference in the litho-geochemical properties of the distinguished two types of clayey sediments in lacustrine or lacustrine-fluvial sequences is explained by different fluvial conditions of their forming and also by different diagenetic processes.

The content of heavy minerals (according to J. H or n i š, 1977), in lacustrine or lacustrine-fluvial sediments at the Zitny ostrov island, is not equal, considerably varying is the representation of individual minerals. So, in borehole HGV-4 the content of opaque minerals is within the range of 7.7 - 16.6%, of garnets 2.6 - 13.0%, clorite 0.5 - 2.4%, carbonates 36.6 - 75.1%. In borehole HGV-6 opaque minerals are represented 8.5 - 82.2%, garnets 1.0 - 38.3%, chlorite 1.0 - 41.6% and carbonates 4.2 - 54.5%. Particularly characteristic of this type of sediments when compared to other is a relatively high representation of carbonates and a low content of garnets. Rarely, the occurrence of hypersthene is also recorded in these sediments.

The lacustrine or lacustrine-fluvial sediments distinguished by us at the Zitny ostrov island are generally known in not being particularly rich in paleontological remnants. More important finds of ostracods in the frame of this investigation were recorded by Brestenská (1977) in borehole HGV-4 (depth 97, 99.3 and 102 m), in borehole HGV-3 (depth 106.5 - 106.6 m), in borehole HGV-7 (depth 161.3 - 161.4 m and 193.0 -195.5 m). In the ostracod fauna the following species are essentially represented : Candonea candida (Müller), Candida sp. div. juv. str., Cyclocipros ovum (Jurine), Scottia browniana (Jones), Scottia tumida (Jones), Limnocythera inopinata (Baird), Metacypris coret Robertson, Ilyocypris gibba (Ramdohr), data Brady It is worth mentioning the authoress', find of macrospore Azolla ficuloides Lam. fossilis Flrorschütz in borehole HGV-6 at depth 223.5--223.6 m. The finds of spores and pollen from clayer layers from boreholes HGV-6 (depth 197 - 198 m) and HGV-7 (depth 183.5 m) by P-l a nd e r o v á (1977) are also important. In borehole HGV-6 there are spores and pollen of the following familiers and genera : Gramineae, Cedrus sp., Chenopodiaceae, Liliaceae, Cyperaceae, Quercus, Pinacea, Pinus silvestris, *Pleurozonaria* and in borehole HGV-7 practically of similar representation : Quercus, Keteleeria, Abies, Picea, freshwater plankton of the genus Pleurozonaria, NAP, mainly Ranunculaceae, Rosaceae.

Within the complex study of deep hydrogeological boreholes at the Žitný ostrov island we tentatively took samples from three boreholes (HGV-5, HGV-6 and HGV-9) of the core from clayey layers for the study of paleomagnetism. From borehole HGV-5 samples from the depths of 135.5, 137.9, 140.5 and 142.8 were taken. The upper three samples (from depths of 135.5, 127.4 and 137.9 m were characterized by positive mag-

254

netization and the lower by negative. From borehole HGV-6 we took samples from depths of 197.5, 203.0, 230.8 and 238 m. All of them (except the sample from the depth of 203.4 m) displayed negative magnetization. In borehole HGV-9 samples were taken from depth 161.2 to 161.7 m (on the whole 25 samples). Eleven upper samples except one displayed direct magnetization to the depth of 161.4 and positive magnetization from the depth of 161.4 m to 161.7 m.

Setting out from paleomagnetic scale of C o x (1968), the obtained values of paleomagnetism make it possible the following interpretation in the individual boreholes. The magnetic inversion found in borehole HGV-5 is bound to the inner part of the loamy-clayey sequence, which shows traces after pedogenetic processes. We suppose that the mentioned magnetic inversion in this sequence (depth 137.9-140.5 m) corresponds to the inversion boundary Brunes-Matujama (in the chronological scale it is around 0.7 m.y. This whole sequence (at depth of 118.9-143.0 m) corresponds to the Günz/Mindel-Cromerian interglacial period. We correlate this sequence in age then also with the sequences in borehole HGV-3 (depth 95 m) and borehole HGV-4 (depth 144 m) with the already mentioned finds of ostracodes and assign them to the Cromerian.

The paleomagnetic data obtained from borehole HGV-6 show that except one sample from the depth of 203 m they have negative magnetization. The complex of sediments in this borehole (perhaps representing a fossil soil horizon) from the depth of 197.5 m corresponds in time to the Matujama magnetic epoch. The positive polarization of the sample from depth 203 m could probably indicate the Jaramillo episode (inside the Matujama epoch), providing the possibility to assign this sequence to the Donau/Günz interglacial period. In any case there is a sequence of the Early Quaternary, younger than 1.8 m.y. The assignment of this sequence to the interglacial is also supported by finds of flora (from the depth of 197 - 198 m) as well as by the occurrence of *Azolla filiculoides* L a m. in this borehole from the depth of 223.5 - 223.6 m.

Similarly as in the mentioned borehole HGV-6, also in borehole HGV-9 at depth 161.4 - 161.6 m a magnetic inversion was observed, most probably corresponding to the Jaramillo episode (of the Matujama epoch). In this borehole, as in the preceding one, the underlying beds also formed in the Early Quaternary. Their common feature, as we have already mentioned, is the low coefficient of microaggregation, the low content of humus, variable content of CaCO₃ and high pH values.

We range to period of the Earliest Interglacial Donau/Günz, besides the mentioned sequences in boreholes HGV-6 and HGV-9, also clayey sequences in borehole HGV-7, in which at the depth of 183 m the find of interglacial flora is recorded and at the depth of 161.3 - 161.1 m are also finds of ostracods of interglacial character.

The total of data obtained by lithological-geochemical, paleontological, mineralogical-petrographical investigation and the study of paleomagnetism makes it possible to range the distinguished lacustrine or lacustrine-fluvial sediments at the Zitny ostrov island generally to the Eopleistocene, i.e. to the stratigraphic division of the Quaternary distinguished in the sense of Gromov (1957), Gromov, Krasnov, Nikiforova (1958), Nikiforova, Krasnov et al. (1976).

In this stratigraphic division of the Quaternary the following stages are also included: Biber, Biber/Donau, Donau, Donau/Günz, Günz, Günz/ Mindel. A more detailed division of the individual stages will require still further investigations.

In order to support assignment of the lacustrine and lacustrinefluvial sediments at the Zitny ostrov island to the Eopleistocene the first finds of ostracodes established by J i r í č e k (1969) from boreholes HVZ-3and HVZ-2 from the area of Dunajská Streda may be still mentioned. This author mentions in borehole HVZ-3 8 species and 13 individuals and in the underlier of the ostracod fauna in borchole HVZ-2 he established gastropods : Gastocopta cf. noulitiana ( D u p .), Carychium minimum ( M üller), Segmentina sp., Cepaea sp., Bythynia Schweyr. Hyrošova - Vávrová (1959) and Buday (1959, 1962) called attention to finds of fauna similar to those mentioned by R. Jiríček from the area of Dunajská Streda from Eopleistocene sediments of the eastern part of the Zitny ostrov island near Kameničná. At last, for completeness it is necessary to mention that Brestenská (1966 a, b) determined also 15 species and 63 individuals of ostracods from the central part of the Zitny ostrov island from the area of Gabčikovo (boreholes OV-2 and VOK-88), then from the area of Palkovičovo (borehole OV-11) and Kližská Nemá (in boreholes HV-210, HV-222, VJ-203, VJ-204).

B) Fluvial sediments build up the upper complex of Quaternary sediments at the Žitný ostrov island. The sediments of this complex occur at surface mainly in the upper part of the core of the island. They are deposited on the above described *Eopleistocene lacustrine* and lacustrine-fluvial sediments, then on older formations (Dacian or Upper Pliocene). This upper complex was designated by J a n á č e k (1967 a, 1969) as the "Danube gravelous series". Its thickness is not equal (below Bratislava about 20 m, near Komárno 8 - 12 m and in the central part near Gabčíkovo it attains 130 - 150 m) according to J a n á č e k. In the deep hydrogeological boreholes (HGV) studied by us it attains up to 160 m.

The upper complex of fluvial sediments at the Zitny ostrov island is predominantly built up of gravels, gravelous sands, sands (sometimes also with larger pebbles); less represented are here clayey or loamy sediments, which are most often found in form of lenticles, more rarely form layers extending at greater distances.

The greater thickness of the upper complex and the prevalence of thicker loose materials in its lithological composition reflect con-strative accumulation. Though in its structure stream-bed, flood-plain and dead arm facies take part, which are superimposed in cyclic superposition on one another as is to be seen from boreholes, however, the stream-bed facies predominates and the flood-plain; the dead arm facies are usually removed or preserved at various depth in form of larger or smaller lenticles. Destruction of these facies was by the influence of lateral erosion of the migrating Danube stream-bed. In close co-activity of accumulation and synsedimentary tectonic mouvements a typically con-strative fluvial with many-stage or polycyclic development formed. Between

the individual cycles lying on one another we observe wash-outs, separating the individual beds, however, usually of no stratigraphic importance.

In the area under study the gravelous material of the upper Quaternary fluvial complex is usually marked by characteristic rusty-brown to brownish yellow colouring with frequent limonitization. According to the data of M i n a r i k o v á (1966), in petrographic composition of this complex quartz and quartzites (70 - 80%) are mostly represented. In the residue there are various types of silicates (5%), mainly brown and ochreous silicites, less grey silicites and rarely reddish-brown, red and black silicites. Another type of rock are limestones and dolomites, more represented in the upper parts (around 6%), however, decreasing downward. From sandstones (content around 4 - 8%) most abundant are quartz sandstones, less polymictic sandstones, more rare red quartz sandstones, micaceous fine-grained sandstones, glauconite sandstones and calcareous sandstones. Approximatelly equally represented as sandstones are also crystalline schists, the content of which decreases downward and the amount of silicites increases.

From crystalline schists are mainly represented two-mica gneisses, less muscovite, light-coloured biotite and amphibole, rarely garnetbiotite gneisses and granulites. From granitic rocks, forming only a small admixture (1%), two-mica and muscovite granites and fragments of pegmatite character are present.

Among heavy minerals in gravelous sandy sediments of the upper fluvial complex, according to Hornis (1977), opaque minerals and garnet are mostly represented. The content of opaque minerals varies within the range of 9.5 - 69%, their greatest representation is observed in horeholes HGV-1 (up to 69%), HGV-2 (up to 51%) and HGV-3 (up to 47.5%). Garnets are found within the range of 1 - 45.2% the greatest content is recorded in borehole HGV-3 (up to 45.2%), in borehole HGV-8 (up to 40.8%), HGV-9 (up to 37.0%) and HGV-2 (up to 40.8%). Whereas opaque minerals are relatively equally represented in the complex, in garnets we observe a decreasing trend in direction from above downward practically in all observed boreholes. Representation of other heavy minerals is as amphiboles (up to 14%), chlorite (up to 15%), epidote (up to 18.5%). From other heavy minerals there are still represented apatite, zircon, rutile, tourmaline, zoisite, staurolite, disthene, augite, titanite, biotite, sillimanite, and alusite and dimmed minerals. Carbonates in this complex are represented with low contents. Especially interesting in this complex is the presence of hypersthene, bound to the northwestern and central part of the Zitny ostrov island and to the depth of around 80 - 109 m; its content attains up to 4%. Its presence convincingly confirms the already earlier expressed opinion (Vaškovský, 1970) of influx of the Váh River into the Danube River in the Older Quaternary in the southwestern part of the Danube lowland and its gradual migration to SE.

The upper gravelous sandy complex is mostly sterile paleontologically. The only microfauna of freshwater ostracods was found by Brestenská (1977) in borehole CHGP-1 near Benková Potoň at depth 84 and 93 m: Candona div. sp. juv., Cyclocypris sp., Limnocythere sp., Ilyocypris sp., and in borehole HGV-6 near Michal na Ostrove at depth 98 —

17 — c. 50

- 99 m she established *Ilyocypris gibba* (R a m d o h r). The earlier finds of the mentioned authoress from the year 1966 from boreholes near Gabcikovo /OV-2, OV-12 / and Palkovičovo / OV-11 and OV-10/ where she found 9 species and 21 individuals may be also ranged to this circle.

According to the superposition of the upper gravelous sandy fluvial complex we presume that it was forming during the periglacial Pleistocene, i.e. from the Mindel to the end of the Wurm. So far we have not sufficient data for its more detailed stratigraphical subdivision. We may only suppose about clayey layers in boreholes HGV-2 (83-84 m), HGV -8(93 m) and HGV-1 (80-85 m), in which finds of interglacial fauna are observed, that there is most probably the Mindel/Riss Interglacial. The mineralogical-petrographical analyses point out that the fluvial complex is built up of Danube material mixed with the material from Carpathian streams.

C) Sediments of the surficial cover. The sediments of the surficial cover represent a complex of sediments, which are covering the above described complex of fluvial gravelous sandy sediments at the Žitný ostrov island. Thickness of sediments of the surficial cover is variable, up to 5 - 8 m. In the structure of the surficial cover the following facial-genetic types of Quaternary sediments take part : a) fluvial-colian (loess-like) loams; b) sediments of the flood-plain facies; c) sediments of the facies of dead arms; d) drift and re-blown sands; e) buried soils—as a particular product of the Quaternary. The sediments of the surficial cover represent the time of the Late Glacial, the Wurm and Holocene. These facial-genetic types of sediments were described more in detail by V a s k o v s k 4. V a š k o v s k y, S c h m i d t (1979).

### REFERENCES

- A d a m Z., D l a b a č M. (1961) Nově poznatky o tektonice čs. části Malé dunajské niziny. Věstnik ÚŮG, 33, 3. Praha.
  - Dlabaē M. (1969) Vysvētlivky k mapám mocností a litofaciálního vývoje Podunakské nížiny. In: Paleogeografia a mocnosti neogěnu Západných Karpát. Západné Karpaty, 11. Bratislava.
- Brestenská E. (1933a) Mikropaleontologický výskum mladšieho pliocénu v južnej časti Podunajskej nížiny. MS, Archiv GUDŠ. Bratislava.
  - (1933b) Mikropaleontologický výskum sedimentov pliocénu Podunajskej nížiny v oblasti vodného diela Dunaj. MS, Archív GÚDŠ. Bratislava.
  - (1977) Správa o vyhodnotení vrtov IGHP/ochrana vôd Žitného ostrova/ mikrofauna.
     MS, Archív GÚDŠ. Bratislava.
- Buday T. (1959) Prehled vývoje neogenu Západních Karpát. Časopis pro min. a gell. 4. Praha.
- B u d a y T. a kol. (1962) Vysvetlivky k prehladnej geologickej mape 1 : 200 000, list Čalovo. Bratislava.
- Buday T. akol. (1967) Regionální geologie ČSSR, 2 Západní Karpaty karpatské neogénní pánve. ČSAV. Praha.
  - (1938) Regional geology of Czechoslovakia. Part II. The West Carpathians. Academia. Praha.



Cox A. (1939) Geomagnetic reversals. Science, vol. 163. Wasington.

- Čepek L. (1933) Tektonika komárenská kotliny a vývoj podělního profilu čs. Dunaje. Sborník SOU, 12. Praha.
- Čermák D., Gaža B. (1973) Záverečná geologická správa o prieskumnom termálnom vrte Čalovo-1. MS, Geofond. Bratislava.
- Dlabač M. (1930) Poznámky ke vztahu mezi tvarem povrchu a geologickou stavbou Male dunajské nižiny. Geol. práce, Zoš. 59. Bratislava.
- Fusán O. (1971) Geologická stavba podložia zakrytých oblastí južnej časti vnůtorných Západných Karpat. Zborn. geol. vied., Západně Karpaly, zv. 15. Bratislava.
  - Slávik J., Plančár J., Ibrmajer J. (1972) Geologická mapa podložia zakrytých oblastí južnej časti vnútorných Západných Karpát – mapa 1:500 000. GÚDŠ. Bratislava.
  - Biely A., Plančár J. (1979) Geologická stavba podložia terciéru Západných Karpát. MS, Arcíhv GÚDŠ. Bratislava.
- Gaza B., Krejča J., Holčezyová Z., Šteflok J. (1972) Dunajská Streda speciálne skúšky na vrte DS-1. MS, Geofond. Bratislava.
- Gromov V. I., Krasnov I. I., Nikiforova K. V. (1958) Osnovnye principy stratigrafičeskogo podrazdelenija četverličnoj sistemy i jejo nižnjaja granica. *Izv. AN* SSSR, 5. Moskva.
- Halouzka R., Minaříková D. (1977) Stratigraphic correlation of Pleistocene deposits of the river Danube in the Vienna and Komárno basins. Antropozoikum 11. Praha.

Holcczyová Z., Gaža B. (1972) Čalovo - termálny vrt. MS, Geofond. Bratislava.

- Homola V. (1956) Geologické zpracování opěrné vrtby Kolárovo-1. MS, Geofond. Bratislava.
  - (1960) Operná vrtba Diakovce-1 v Male dunajské nízině. MS, Geofond. Bratislava.
- Horniš J. (1977) Správa o sedimentárno-petrografickom výskume Žitného ostrova / čiastková správa za r. 1977/. MS, Archív GÚDŠ. Bratislava.
- Horusitzky H. (1908) Geologische und Bodenkundliche Beschreibung des westlichen Teiles des ungarischen kleinen Alföld. Jahr. d. kgl. ungar. geol. Anslalt, f. 1906. Budapest.
  - (1909) Die geologische Verhältnisse des südlichen Teiles der Kleinen Karpathen. Jahr.
     d. kgl. ungar. geol. Anstall, f. 1907. Budapest.
- Hromádka J. (1956) Orografické třídění Československé republiky. Sbor. Čs. spol. zemčpisné, LNI. Praha.
- Hýrošová M. (1959) Výsledky mikropaleontologického výskumu vrtných vzoriek pre vodné dielo Nagymaros, zo širšieho okolia Komárna a Nových Zámkov. MS, Geofond. Bratislava.
- Janáček J. (1966) Problémy tektonické stavby oblasti vodního díla Dunaj. Geol. práce, Správy 38. Bratislava.
  - (1967) Závěrečná zpráva o tektonickém výzkumu v oblasti vodního díla Dunaj. MS, Geofond. Bratislava.
  - (1969) Nové stratigrafické poznatky o pliocénní výplni centrální části Podunajské nížiny. Geol. práce, Správy 50. Bratislava.
  - (1971) K tektonice pliocénu ve střední části Podunajské nížiny. Geol. práce, Správy 55. Bratislava.
- Kiříček R. (1969) Hranica medzi terciérom a kvartérom v karpatskej oblasti. MS, Geofond. Bratislava.

Kačník E. (1966) Riečny stupen Kližská Nemá. MS, Geofond. Bratislava.

Kolesík M. (1949) Závěrečná zpráva o struktúrních vrtbách v oblasti Kolárovo. MS, Geofond. Bratislava.

- Krasnov I. I., Nikiforova K. V. (1973) Schema stratigrafii četvertičnoj /antropogenovoj/ sistemy utočennaja po materialam poslednich let. V kn.: Stratigrafia, paleogeografia i litogenez antropogena Evrazii. GIN AN SSSR. Moskva.
- Krippel E. (1963) Postglaziale Entwicklung der Vegetation des nordlichen Teils der Donauebene. Biológia, 18, 10. Bratislava.
- Koutek K., Zoubek V. (1936) Vysvētlivky ke geologické mapē v měřítku 1:75 000, list Bratislava. Knihovna St. geol. ústavu. Praha.
- L o ž e k V. (1955) Zpráva o malakozoologickém výzkumu Veľkého Žitného ostrova. Biologia,
  6. Bratislava.
- Lukniš M., Mazúr E. (1959) Geomorfologické regiony Žitného ostrova. Geogr. časopis, 11, 3. Bratislava.
- Mazůr E., Lukniš M. (1980) Regionálne geomorfologické čelenenie. Mapa 1:500 000 SAV. Bratislava.
- Minaříková D. (1966) Sedimentárne-petrografický výzkum píščitých štěrků Žitného ostrova v oblasti vodního díla Dunaj. MS, Archív GÚDŠ. Bratislava.
- Myslil V. (1958) Nové poznatky o geológii a hydrogeológii bratislavského Podunají. Věstnik ÚÚG, 33. Praha.
- Nikiforova K. V. (1977) The Statis of the Boundary between the Pliocene and Quaternary. Kaiyo Shuppan Co. Ltd. Tokio.
- Pacltová B. (1971) Palynologický vzkum vrtu HVŽ-3, v správe: Veľký Žitný ostrov, regionálny hydrogeologický prieskum r. 1971 (A. Porubský). MS, Geofond. Bratislava.
- Pagáč I. (1966) Zhodnocení hlubinné vrtby Komárno-1. MS, Geofond. Bratislava.
- Planderová E. (1966) Palynologický výskum sedimentov pliocénu Podunajskej nížiny v oblasti vodného diela Dunaj. MS, Geofond. Bratislava.
  - (1977) Správa o vyhodnotení vrtov IGHP /ochrana vôd Žitného ostrova čast palinologia. MS, Archív GÚDŠ. Bratislava.
- Porubský A. (1973) Podzemné vody Bratislavy a jej okolia. Geogr. čas., 25, 3. Bratislava.
- Rónai A. (1960) Hydrogeologie der Quartärschichten in der Kleinen Ungarischen Tiefebene. Geol. práce, Zos. 59. Bratislava.
- Szádeczky Kardoss E. (1938) Geologie der Rumphungarländischen Kleinen Tiefebene. Mill. Berg. u. Hüllenm. Abl d. Univ. in Sopron, 10. Sopron.
- Schmidt Z. (1977) Kvarterne makkyse Zitného ostrova. MS, GUDŠ. Bratislava.
- Šancer E. V. (1951) Alluvij ravninnych rek umerennogo pojasa i jego značenie dl'a poznanija zakonomernostej strojenija a formirovanija alluvial'nych. svit. Trudy Insl. geol. nguk, 135, geol. seria, 55, 20. Moskva.
- Timkó E. (1904) Die agrogeologische Verhältnisse im zentralen Teil der Insel Csalloköz zwischen Nyárasd, Vajka und Kulcsod. Jahresb. d. ung. geol. Anstall, f. 1903. Budapest.
- Vaškovská E. (1977) Litologicko-geochemický výskum kvarternych sedimentov Žitného ostrova. MS, Archív GÚDŠ. Bratislava.
  - Vaškovský I., Schmidt Z. (1979) Formation, structure and composition of Holocene sediments of the Žitný ostrov island, Danube lowland, Czechoslovakia. Paleohydrogeology of the temperate zone, Acla Univ. Oulmensis. Oulu.
- V aš k o v s k ý I. (1970) K priebehu podložia pod sprašovými pokryvmi a piesčito-štrkovou akumuláciou na Trnavskej pahorkatine. Geol. práce. Zoš. 53. Bratislava.
  - (1977) Quaternary of Slovakia. GÚDŠ. Bratislava.
  - Vaškovská E. (1977) Regionálny kvartérno-geologický výskum Žitného ostrova MS, Arvhív GÚDS. Bratislava.

# НОВЫЕ ДАННЫЕ О ПЕРМСКИХ ОТЛОЖЕНИЯХ СЕВЕРО-ЗАПАДНОГО ОКОНЧАНИЯ МАРМАРОШСКОГО МАССИВА¹

## Л. А. СЕРГЕЕВА²

Длительное время считалось, что некоторые пестроцветные образования северо-западного окончания Мармарошского массива и Чивчинских гор являются одновозрастными и сформировались в трнасовое время (Т к а ч у к, Г р у ж и й, 1957; С л а в и и, 1963). Такой вывод явился следствием сложных тектонических условий, затрудияющих изучение последовательности накопления осадков, и внешнего сходства верхнепалеозойских и мезозойских отложений.

На основании изучения литолого-фациального состава, выяснения структурно-тектонического положения и биостратиграфических особснностей в толще пестроцветных вулканогенно-осадочных образований в настоящее время установлены каменноугольные, пермские и нижиетриасовые породы (Жуков, Сергеева, Пасечник, 1964; Славин, Жуков, 1966; Сергеева, Жуков, 1966; Сергеева, 1974; Жуков, Возар, Янев, 1976; Сергеева, 1980).

Обстоятельный обзор микрофлористического изучения метаморфизованных пород верхнего палеозоя Украинских Восточных Карпат ириведен в нашей публикации 1980 г. (Сергеева, Жуков, 1980). В частности здесь изложен палеопалинологический материал, свидетельствующий присутствии среди исследуемых осадков образований карбона (преимуществению верхнего отдела) и проведен сравнительный анализ палиноморф с таковыми из аналогичных образований польской части Карпат, южной части гор Бихор (район Арьяшени), Малых Карпат (окрестности Ламача), Восточной Чехии и Балканид.

На отложениях, содержащих микрофитофоссилии каменноугольного возраста, несогласно залегает толща пестроцветных пород, относящаяся рансе к триасу. В настоящее время в пределах Раховского массива она выделяется в качестве самостоятельной красноплесиенской свиты, принадлежность которой к перми подтвердилась нашими нанодками спор и пыльцы (Жуков, Сергеева, Пасечиик, 1964; Сер-

¹ Доклад была представлена на XII-ом Конгрессе Карпато-Балканской Геологической Ассоциации, 8—13 сентября 1981 г, Бухарест, Румыния.

² Институт геологических наук АН УССР, Киев.

rеева, Жуков, 1966; Сергеева, 1974). Это оболочки Perisaccus pumicosus (Ibr.) Isch., Rhytisaccus subnotatus Naum., Pemphygaletees auritus Lub., Florinites sp., Trilobozonotriletes incisotrilobus (Waltz) Naum., T. trivialis (Waltz) Isch., Hymenozonotriletes granulatus (Naum.) Isch. (Красный Плес, стратотилический разрез свиты).

Единичные пермение формы встречались также нами в графитиэпрованных кварцитах участка Кобылецкая Поляна (Vittatina striata L u b ., Pemphygaletes auritus L u b .) и в алевролитовых породах, обнажающихся по рр. Большой Угольке и Перкалаб.

Таким образом, в базальной части пестроцветных вулканогенноосадочных образований Раховского массива и Чивчинских гор нами были обнаружены и описаны палиноморфы нермских преимущественно хвойных и кордантовых растений. Однако, вследствие редкой встречаемости этих оболочек, принадлежность микрофитофоссилий к нижнему или всрхнему отделам нермской системы не указывалась.

Материал, полученный нами в последнее время, позволяет дополнить налинологическую характеристику базальной, вулканогенно-осадочной и гипсоносной свит Раховского массива и уточнить возраст слагающих их пород.

Здесь внервые встречены углефицированные сноры: Raistrickia heteromorpha (Andr.) Siverc., Nigrisporites nigritellus (Lub.) Oschurk., Calamospora plicata (Waltz) Siverc., Verucosisporites verrucosus Ibr., Lueckisporites sp. Ныльца кордантовых представлена видами Cordaitina rotata (Lub.) Medv., C. uralensis (Lub.) Samoil. Отмечены единичные Vittatina vittifer (Lub.) Samoil., V. striata Lub., пыльца голосеменных растений—Ginkgocycadophytus. Вместе с установленными ранее Perisaccus pumicosus (Ibr.) Isch., Rhytisaccus subnotatus Naum., Pemphygaletes auritus Lub., отдельными Florinites sp., и другими приведенный состав палиноморф отвечаст верхней перми.

Микрофитофоссилии сходного состава, представленные Florinites sp., F. schopfi M e d v., F. cf. tener M e d v., Cordaitina uralensis (L u b .) S a m o i l., Striatopodocarpites sp., Punctatisporites punctulatus I b r., Convolutispora sp., Vittatina sp. были обнаружены нами (А ч е е в, Ж у к о в, Г а з д а н о в и др., 1976) в терригенных образованиях Северной Осетии (междуречье Геналдон-Фиагдон), проблематично относимых к карбону и залегающих под фаунистически охарактеризованными верхиепермскими известняками.

Сравнительный анализ микрофитофоссилий, выделенных из перми Украинских Восточных Карпат, Северной Осетии и аналогичных образований г. Сливена Восточных Балканид (образцы переданы И. Пашевым и Ф. Жуковым, показал следующее.

Для проб, отобранных у г. Сливена, также как для Восточных Карпат и Северной Осетии, характерна одномешковая пыльца Floriniles sp. (F. luberae S a m o i l., F. pumicosus S c h., W i l l. et B e n., F. oralis B h a r d w.), занимающая в палинологическом спектре господствующее положение. Отмечаются здесь пыльцевые оболочки кордантовых [Cordaitina cf. spongiosa (L u b.) S a m o i l]. и виттатин (Vittatina

striata Lub., V. vittifer Lub.), имеющие также распространение в нермских отложениях Северной Осетии.

Наряду с пыльцой, в исследуемых породах Восточных Балканид развиты оболочки Sporonites sp., Inderites compacta (Lub.) Abram. et March., акритархи родов Verihachium sp., Leiosphaeridia sp., ? Tasmanites sp.

Пермский возраст пород г. Сливена, в свою очередь, подтверждают споры ископаемых грибов типа *Sporonites* (Potonié) Ibr., характерные для отложений цехштейна.

Оболочки турмы Sacciles известны и в мстаморфизированных отложениях перми Малых Карнат (Жуков, Возар, Янев, 1976). Вместе с ними в нестроцветных породах распространены Sporonites sp., Reticulatisporites sp., Punctatisporites sp., Schulzospora sp., Taeniaesporites sp., Calamospora sp., Raistrickia sp., Densosporites sp., Cingulatizonates sp., Florinites sp., Protohaploxypinus sp., Protodiploxypinus sp., Pityosporites и другие. Комилекс пермских спороморф выделен в метаморфитах Чешского массива близ г. Чески-Брод. Он состоит преимущественно из пыльцы с участием рода Vittatina (K o n z a l o v a, 1970). Пермская микрофлора, найденная в восточной части Низких Татр, характеризуется обилием форм родов Vittatina, Striatosaccites, Protohaploxypinus, Ginkgocycadophites, Punctatisporites, Apiculatisporites, Aulisporites и многих других. Смешанные комплексы, состоящие из верхиепермских Vittatina, Lueckisporites virkkiae, L. parvus, L. globosus, Jugasporites delasaucei, Limitisporites moersensis, Potonicsporites и некоторых триасовых форм, выделены Е. И ландеровой, 1973) из нелитопсаммитовых отложений мелафировой серии единицы Хог в северовосточной части Низких Татр.

В Восточной Словакии в метаморфизованных графитовых сланцах, залегающих под породами неогена, установлена ассоциация спор Karpatisporites, Klausipollenites, Taeniaesporites, Striatites и другие, указывающие на принадлежность отдельных неовулканитов к верхней перми.

Однако по составу, облику, морфологическим особенностям палиноморфам пестроцветных образований Раховского массива Украинских Восточных Карпат наиболее соответствуют комплексы спор и пыльцы, установленные С. Чернявской и Ж. Лачевой (Жуков, Возар, Я нев, 1976) вскв. Р-7 (Тырговищте) и скв. Р-3 (Ветрино) Мизийской плиты (Северная Болгария). Здесь характерны верхнепермские Nuskoisporites klausi, Limitisporites rectus, L. latus, Lueckisporites virkkiac, Taeniaesporites noviaulensis, Platysaccus papiliosus, Falcisporites zatiei, Labisporites granulatus, Nuskoisporites gondvanensis, Vittatina vittifer, V. striata, Platysaccus sp., Jugasporites sp., Protodiploxypinus elongatus, Pemphygaletes striatus, Dacridium sp., Caytoniales sp. Названные микрофитофоссилии ценны тем, что извлечены из терригенных и вулканогенных пестроцветных образований, сопоставленных на основании литолого-фациального анализа (Жуков, Сергеева, Янев, 1976) с обнажениями перми Балканских гор. При этом следует указать, что этот палеопалинологический материал получен из скважии, которые в ряде случаев вскрывают полный разрез нерми (Ветрино). Учитывая сходство микроформ, извлеченных из назвакных образований Мизийской плиты и каменного материала, отобранного близ г. Сливена, воз-



можно высказать предположение о позднепермском возрасте осадочных пород Сливенской Иланины.

Интересно отметить, что сходные нашим ассоциации верхнепермских микрофитофоссилий изучены (Jerzykiewicz, 1979) из отложений, вскрытых скв. Болеславец-24 (Северосудетский синклинорий). Миоспоры здесь представлены группой Saccites: Lueckisporites, Klausipollenites, Pityosporites, Labisporites, Jugasporites, a также отдельными одномешковыми формами Cordaitina, Potonieisporites, Nuskoisporites. Этот комплекс соответствует комплексам верхней перми Свентокшиских гор и Западной Европы.

# ЛИТЕРАТУРА

- Ачеев Б. И., Жуков Ф. И., Газданов А. У. и др. (1976) Стратиформный тип оруднения в палеозойских породах Северной Осетии. *Известиа АН СССР*, 4, с. 122—124.
- Жуков Ф. И., Сергеева Л. А., Пасечник Я. В. (1964) Некоторые характерные черты карпатского палеозоя на Раховском массиве. Геол. экурп., 24, вып. 6, с. 31—37.
- Возар И. И., Япев С. Н. (1976) Пермские осадочно-вулканогенные формации и рудные месторождения Карпато-Балканской обл. Киев: Наук. думка, 181 с.
- Сергеева Л. А., Жуков Ф. И. (1966) К палинологической характеристике пестроцьетов Раховского массива. В кн.: Полезные ископаемые Украины. Киев: Наук. думка, с. 102—105.
  - (1974) Возможность расчленения метаморфизованных пород палеозоя ядра Восточных Карпат по палинологическим данным. В кн.: Материалы X Конересса КБГА. Стратиграфия и палеонтология. Братислава: с. 199—205.
  - (1980) Девоиские и каменноугольные микрофитофоссилии в метаморфизованных отложениях Кариато-Балканской складчатой зоны. — В кн.: Палеонтологические исследования на Украине. Материалы I годичи. сессии Укр. палеонтол. 0-ва. Киев: Наук. думка, с. 257—264.
- Славии В. И. (1963) Триасовые и юрские отложения Восточных Карпат и Панноиского срединного массива. М.: Госгеолтехиздат (1963) 156 с.
  - Жуков Ф. И. (1966) О пермских отложениях в советской части Восточных Карпат. В кн.: Очерки по геологии Советских Карпат. М.: Изд-ео МГУ, с. 36—44.
- Ткачук Л. Г., Гуржий Д. В. (1957) Раховский кристаллический массив (Карпаты). Киев: Изд-во АН УССР 193 с.
- Čorna O., Ilavska Ž. (1962) Nalez permskych sporonorf v Małych Karpatach. Geol. zb. SAV, 13, 2, p. 187 – 196.
- Konzalova M. (1970) Vysledky mikropaleontologickeho studia nekterych sedimentarnich utvaru Ceskeho masivu. Geoindustria, 2, s. 41-63.
- Planderova E. P. (1973) Palynological research in the melaphyre series of the Choc unit in the NE part of Nizke Tatry between spišsky Štavnik and Vikartovce. Geol. pr. SAV, 60, p. 143 - 168.
  - (1974) Palynological investigation in the region of the West Carpathians in Slovakia.
     Proceed. of the XI Congr. of CBGA, Stratigraphy and Paleontology. Bratislava.
- Jerzykiewicz J. (1979) Pierwsze stanovisko spor gornopermskich z synklinorium północnosudeckiego. Kwart. geol., 23, 4, s. 784 – 789.

Institutul Geologic al României

# ПАЛИНОМОРФЫ ДЕВОНА В МЕТАМОРФИТАХ СТРАНДЖИ¹ Л. А. СЕРГЕЕВА², К. И. НАЧЕВ², Й. Г. МАЛЯКОВ²

Странджанский горный массив — своеобразный геологический регион юго-востока Болгарии, сложенный породами архейско-четвертичного возраста, частично, претерпевшими метаморфизм. Из-за сложности тектонического строения, седиментологического и метаморфического развития, а также отсутствия характерных органических остатков, стратиграфическое расчленение метаморфизованных образований представляют здесь сложную проблему.

Детальный анализ различных точек зрения на геологию Странджи представлен И. К. Начевыми Й. Г. Маляковым Третьей научной сессии (1978 г.), посвященной этому вопросу, а также всесторонне изложен ими в публикации 1979 г. (Начев, Маляков, 1979). В этой работе авторы, учитывая главные различия во взглядах на возраст пород и характер строения Стоиловской структуры, выделяют три этапа в развитии познания геологии Странджи. При этом, основываясь на новых стратиграфических и седиментологических данных, они отдают предпочтение одному из них, подтверждающему на основании палеопалинологических исследований палеозойский возраст пород аспидной формации Странджанского антиклинория.

Впервые ассоциации микрофитофоссилий в метаморфитах проблематичного возраста Стоиловской структуры были получены нами в период совместного изучения образцов пород, отобранных в Страндже, Искырском ущелье и Краиште (С е р г е е в а, Н а ч е в, М а л я к о в, 1979). Результаты палинологического анализа показали, что в большинстве проб (в 14 из 28) присутствуют палиноморфы кембрия, девона и карбона (Стоиловская структура), ордовика и силура (Искырское ущелье) девона и карбона (Краиште). До наших исследований метаморфизованные образования Странджи, в основном, интерпретировались как мезозойские или относились к формациям неустановленного возраста. Что касается материала из Искырского ущелья и Краиште, то он имел достоверно установленный палеозойский возраст и был отобран нами для корреляции по органическим остаткам со Стоиловской структурой.

² Институт геологических наук АН УССР, Киев.

4 Высший горно-геологический институт, София.

¹ Доклад была представлена на XII-ом Конгрессе Карпато-Балканской Геологической Ассоциации, 8—13 сентноря 1981 г., Бухарест, Румыния.

³ Геологический институт БАН, София.

На участке Дядо Костов дол (Странджа) в черных мелкозернистых породах нами установлены акритархи, свойственные, преимущественно, отложениям среднего и верхнего кембрия. Не исключено, что они могут присутствовать и в образованиях нижнего ордовика. Это редкие оболочки Dictyotidium cf. cambriense Slav., Lophidiacrodium arbustum T i m., Acanthodiacrodium vestitum T i m., Dasyrytidiacrodium sp., Ooidium sp., Vendotaenia sp. Приведенные растительные остатки по преобладанию диакродиевых сходны с комплексом микрофитофоссилий терригенно-карбонатной толщи Юго-Восточного Памира (Сиверцева, Смирнова, 1974). Отмечаются также скопления оболочек этого облика в кембрии Западной Европы, Северной Африки, Антарктиды и других территорий.

При исследовании филлитов и мраморов на участках Бръшлян (р. Чурка), Каменска бърчина, Катун (р. Велека) нами были обнаружены ткани растений, состоящие из фрагментов кутикул и трахеид, распространенных в палеозойских отложениях. Наиболее интересны трахеиды с окаймленными порами араукароидного типа, встреченные в глинистых примесях мраморов участка Каменска бърчина. Подобные ткани характерны для девонзких-каменноугольных отложений Украинских Восточных Карпат (С е р г е е в а, 1966, 1974, 1980). Достаточно распространены здесь и примитивные ткани сосудистых растений, вместе с которыми были встречены единичные корродированные микроспоры Leiotriletes sp., Retusotriletes sp., отдельные деформированные акритархи Verihachium sp. и хитинозоа Conochitina sp. также свидетельствующие о палеозойском возрасте вмещающих пород.

Углефицированные остатки спор Leiotriletes sp., Trachytriletes sp., Lophotriletes sp., акритархи Mycrhystridium sp., Verihachium sp., Leiosphaeridia sp. неудовлетворительной сохраиности, трахеиды с простой диагональной и супротивной поровостью были установлены также на участках вдоль рек Младежка и Стръвница. При предварительных исследованиях (Сергеева, Начев, Маляков, 1979) из-за малочисленности фактического материала, вмещающие эти микрофитофоссилии породы мы относили к палеозою. В настоящее время появились новые данные, утверждающие и уточняющие этот вывод. В частности, имеются в виду палиноморфы девона, встреченные в обнажениях при повторном палинологическом изучении филлитов участка Катун и по рекам Младежка и Стръвница.

Микрофлористические остатки девона характеризуются здесь следующими чертами: во всех образцах присутствуют споры с ребристой структурой видов Emphanisporites neglectus V i g r., E. rotatus M c G r e g. в сочетании с Trachytriletes ex gr. minor N a u m. Эти палиноморфы нами ранее не встречались. Спорадически наблюдались Retusotriletes simplex N a u m., R. sp., Однолучевые формы Azonomonoletes costatus T s c h i b r. были отмечены только на уч. Катун. Найдены акритархи подгрупп (родов) Acanthomorphitae — Mycrhystridium sp., Netromorphitae — Leiofusa ? striata M a c h. Polygonomorphitae — Verihachium sp. Ţ M 2, V. polyaster S t a p l. и другие. Интересны Psophosphaera aff. safes T s c h i b r. также обнаруженные впервые (уч. Катун). Растительные ткани однообразны и представлены фрагментами лестничных трахеид.

266

Получены новые данные и о возрасте образца с. 1650 (м. 502, 80). Здесь отмечены споры Emphanisporites rotatus M с G г е g. и Retusotriletes minor N a u m. И, хотя эти оболочки немногочисленны и обуглены, их присутствие свидетельствует в пользу девонского возраста вмещающего их филлита. В начальной стадии палинологического изучения образца С. 1650 отмечалось, что в пробе присутствует достаточное количество углефицированного материала, который на данном этапе исследований невозможно определить даже до рода. Тем не менее, облик, форма, характер скульптуры и другие морфологические признаки растительных остатков уже тогда говорили о том, что они являются палеозойскими.

Удалось определить до вида и некоторые разрушенные акритархи рода *Mychrystridium*, наиденные в образце С. 1650 (м. 481). Их также, по-види юму, следует считать девонскими.

В сланцевых аргиллитах близ с. Долна Мелна и с. Стайчовцы (Краиште) присутствуют микрофитофоссилии нижнего девона в общих чертах напоминающие девонские оболочки Страндки. К ним относятся споры высших растении Emphanisporites rotatus Mc Greg., Retusotriletes divulgatus Tschibr. var. plicatus Tschibr., R. simplex Naum., R. minor Naum., R. pychovii Naum., Reticulatisporites cf. emsiensis All., Leiotriletes sp., Acanthotriletes parvispinosus Naum., akpuтархи Winvaloeusia cf. distracta (Deunff) Deunff, Verihachium trispinosum (Eis.) Cram., V. europaeum Stock. et Will., V. downiei Stock. et Will., Leiofusa striata Mach., Cymatiosphaera cf. miloni Deunff., Domasia sp., Multiplicisphaeridium cf. ramusculosum (Defl.) List.

Ранее (Сергеева, 1966, 1974, 1980) споры девона были выявлены нами при палинологическом изучении метаморфизованных разностей терригенно-карбонатных пород деловецкого комплекса, распространенных в пределах северо-западного окончания Мармарошского массива (Сергеева, 1974). Это Leiotriletes minutissimus Naum., Trachytriletes minor N a u m., Retusotriletes cf. devonicus N a u m., R. subgibberosus N a u m., R. punctatus T s c h i b r., Acanthotriletes cf. serratus N a u m., Camarozonotriletes sp., Emphanisporites sp., Archaeozonotriletes sp., Azonomonoletes laevis T s c h i b r. и др., многочисленные ткани растений. Отмечены отдельные акритархи родов Verihachium sp. и Baltisphaeridium sp. Хотя местонахождения этих микрофоссилий единичны, о некоторые споры порой имеют нечеткую скульптуру, их присутствие в терригеннокарбонатной толще пород деловецкого комплекса позволяет судить о возможном присутствии среди метаморфитов Украинских Восточных Карпат и отложений девона, скорее всего, нижнего.

У с. Кобылецкая Поляна девонские формы отмечены в графитизированных сланцах как в виде самостоятельных групп, так и совместно со спорами каменноугольного возраста (*Hymenozonotriletes* sp., *Trilobozonotriletes inciso-trilobus* N a u m., *Tripartites trifoliolatus* (Horst) Dyb. et Jach.) Последние, очевидно, вмыты, так как приурочены к трещинам, заполненным кальцитовым материалом. Всречены девонские микрофитофоссилии и в графитизированных сланцах участка Красное Плесо.

Л. А. СЕРГЕЕВА и др.

đ.

Что касается широкого распространения в Страндже метаморфизованных пород карбона, то пока уверенно судить по этому поводу не приходится, так как здесь не встречены четкие ассоциации каменноугольных микрофитофоссилий.

Сохранность вышеупомянутых палиноморф неудовлетворительная — оболочки часто разрушены, подвержены коррозии и пиритизации. Вследствие углефикации изменен их цвет. Очевидно, подобные изменения микрофитофоссилий связаны с эпигенетическими процессами.

Однако приведенный состав спор растений и микрофитопланктона, отвечающий аналогичным ассоциациям Восточно-Европейской платформы, Южно Урала и Приуралья, ФРГ, Англии, Канады и других территорий, позволяет уверенно считать метаморфизованные породы отдельных участков Странджи девонскими (нижнедевонскими).

Таким образом, комплексное изучение микрофлористических, литологических и тектонических данных подтверждает концепцию палеозойского возраста (Начев, 1972, 1976; Маляков, 1976) метаморфитов Странджи.

Полученные результаты свидетельствуют о плодотворности такого рода совместных исследований и способствуют положительному решению общих проблем строения, развития и корреляции метаморфических образований Карпато-Балканской складчатой зоны, а особенно Странджи.

## ЛИТЕРАТУРА

- Маляков И. Г. (1976) Тектонско положение на нискокристалинните метаморфити от Югоизточна Странджа. — Геотект., Тектопофиз., геодинам., 5, с. 57—78.
- Начев И. К. (1972) Нови данни за юрската система в Странджа. Сп. Бълг. геол. д-во, 33, 3, с. 325—335.
  - (1976) Седиментните формации в България. Палеонт., стратиер. и литол., 5, с. 45—60.
  - Маляков Й. Г. (1979) Развитие на познанията за геологията на Странджа. — Сп. Бълг. геол. д-во, 40, I, с. 1—10.
- Сергеева Л. А. (1966) О возможном присутствии девонских отложений на Раховском массиве. В кн.: Полезные ископаемые Украины. Киев.: Наук. думка, с. 101—102.
  - (1974) Возможность расчленения метаморфизованных пород палеовоя ядра Восточных Карпат по палинологическим данным. — В кп.: Стратиграфия и пелеонтология. Материалы X Конгресса КБГА. Братислава: с. 199—205.
  - Начев И. К., Маляков Й. Г. (1979) Върху палеозойската възраст метаморфитите в Странджа. — Сп. Бълг. геол. д-во, 40, I, с. 10—17.
  - (1980) Девонские и каменноугольные микрофоссилии в метаморфизованных отложениях Карпато-Балканской складчатой зоны. — В кн.: Палеонтологические исследования на Украине. Киев.: Наук. думка, с. 257—264.
- Сиверцева И. А., СмирноваА. Н. (1974) О находке нижнепалеозойских микрофитофоссилий на Юго-Восточном Памире. — В кн.: Микрофоссилии СССР. Новосибирск; Наука, с. 27—29.

Institutul Geologic al României

# СТРАТИГРАФИЯ И СТРУКТУРНОЕ ПОЛОЖЕНИЕ СУХОВСКОЙ ЗОНЫ УКРАИНСКИХ КАРПАТ¹

# н. в. дабагян ², я. о. кульчицкий ², п. ю. лозыняк ²

В 60-х годах в юго-восточной части южного склона Украинских Карпат были получены интересные новые данные, значительно пополнившие существовавшие представления о стратиграфии мелового флиша, а также позволившие по-новому подойти к решению некоторых вопросов структурно-фациального районирования. Так, к северу от Мармарошской зоны, в полосе развития ,, раховского и буркутского флиша", известной в то время под названием Раховской зоны, удалось выделить (Даба-гян, Кульчицкий, Лозыняк, 1967) три самостоятельных структурно-фациальных единицы — Раховскую (sensu stricto), Суховскую и Буркутскую, причем для каждой из них были установлены характерные типы разреза мела. В частности, Сиховской зоне³ свойственно широкое площадное развитие серого ,,курбикортикального" флиша белотисенской свиты, перекрывающегося кверху своеобразной и палеонтологически хорошо охарактеризованной толщей отложений суховской свиты. Эта структурно-фациальная зона является естественным продолжением "нижнего внутреннего покрова" Румынских Карпат. Отложения белотисенской свиты (неоком-альб) смяты в мелкие складки и представлены тонкоритмичным алевролитово-аргиллитовым серым флишем, в разрезе которого встречаются вкладки (мощность до 100 м и больше) грубослоистых песчаников и реже мелкогалечных конгломератов и гравелитов (богданские и броньковские конгломераты). Белотисенские слои (можность 1000 м) хорошо охарактеризованы палеонтологически (Дабагян, Кульчицкий, Лозыняк, 1967) и в возрастном отношении соответствуют баррему-альбу. Обнаруженный П. Ю. Лозыняком в окрестностях хутора Пригодь (бассейн Лужанки) в нижней части разреза аммонит близкий к Polyptychites stubendorfi (Schmidt) дает некоторое основание предполагать, что низы свиты опускаются в готерив и возможно даже в валанжин. Если это так, то нижняя часть белотисенской свиты является фациальным аналогом вовчинской и воз-



¹ Доклад была представлена на XII-ои Конгрессе Карпато-Балканской Геологической Ассоциации, 8—13 сентября 1981 г., Бухарест, Румыния.

² Украинский научно-исследовательский геолого-разведочный институт, Львов.

можно раховской свит, развитых в Раховской структурно-фациальной зоне.

Кверху белотисенская свита постепенно переходит в отложения суховской свиты, нижняя часть которой (нижнесуховская подсвита) представлена почти черными известковистыми песчаными аргиллитами и мергелями с прослоями песчаников и редко конгломератобрекчий.

Приоритет выделения суховской свиты принадлежит Я. О. К у льчицкому и П. Ю. Лозыняку, которые уже в первых публикациях (Дабагян, Кульчицкий, Лозыняк, 1967; Кульчицкий, Лозыняк, Дабагян, Мархель, 1965; Кульчицкий, Лозыняк, Пастернак, 1966) установили ее объем и возраст. Согласно первоначальному определению, в разрезе суховской свиты (название дано от с. Суха, расположенного у слияния рек Красной и Бороньки) выделяются две основные части: нижняя, сложенная темно-серыми, до черных, мергелями и аргиллитами с фауной головоногих моллюсков, и верхняя, представленная пестроцветными (красными, зеленоватыми, зеленовато-серыми) и серыми песчано-глинистыми породами. Свита занимает промежуточное положение между тонкоритмичным флишем белотисенской и грубослоистыми песчаниками терешовской свит. Обнаруженная в суховских слоях фауна моллюсков и фораминифер позволила отнести вмещающие породы к верхам альба-турону. В качестве эталонных рекомендованы разрезы в с. Суха и по руч. Поркулецу в бассейне р. Терешовы.

При последующих исследованиях, проводимых геологами производственных и научных организаций, выходы суховской свиты были закакартированы в ряде других районов (по р. Белый Черемош в бассейнах рек Тисы, Теребли, Рики и Боржавы). Вместе с тем в последние годы появились отдельные работы (Беэр, Бызова, Маслакова, 1968; Круглов, Смирнов, 1979), в которых без всякого для этого основания пересматриваются объемы свиты и даже, вопреки существующим правилам, предпринимаются попытки введения новых наименований. Так С. С. Круглов и С. Е. Смирнов (1979) предлагают выделить пестроцветную часть разреза в самостоятельную ,,поркулецкую свиту", причем рекомендуют распространить этот термин на пестроцветные части разрезов яловецкой, лолинской и других свит более северных тектонических зон, занимающих несколько иное стратиграфическое положение. Это вызывает необходимость приведения дополнительного более подробного описания стратотипа (окрестности с. Суха) и лектостратотипа (руч. Поркулец) суховской свиты с попутным рассмотрением новых данных о фауне из самой верхней части свиты, ранее палеонтологически недостаточно охарактеризованной.

Стратотии с. Суха. Низы суховской свиты и ее контакт с подстилающей белотисенской свитой хорошо обнажаются на южной окраине села по руч. Плыняку, правому притоку р. Броньки. Вверх по течению ручья от точки его пересечения с дорогой, соединяющей села Бронька и Суха, на протяжении 100 м прослеживаются выходы тонкопереслаивающихся темно-серых аргиллитов и скорлуповатых алевролитов белотисенской свиты. В конце данного интервала обнаружен характерный для верхнего

270

Institutul Geologic al României

3

альба Inoceramus tenuis Mant. (определение С. П. Коцюбинского). Выходы таких же пород наблюдаются по р. Красной в с. Суха, откуда известна находка обломка верхнеальбского Neohibolites cf. minimus (Lister) (II).

Выше точки с иноцерамом до развилки руч. Плыняка среди характерных для белотисенской свиты тонкоритмичных серых алевритовоаргиллитовых пород появляются темно-серые, до черных, мергели и глинистые известняки, а также единичные прослои аргиллитов с зеленоватым оттенком. Эти породы являются переходной пачкой (мощность около 20 м) между белотисенской и суховской свитами и на общем фоне доминирующего юго-западного падения образуют мелкие складки. Данная пачка начинает разрез суховской свиты.

Выше развилки как по левому, так и по правому разветвлениям, слагая небольшую синклиналь, обнажаются более высокие звенья разреза суховской свиты, представленные снизу вверх:

а) 18—20 метровой пачкой сильно перемятых темно-серых, зеленовато-серых и единичных красных мергелистых пород;

6) 20 метровой пачкой темно-серых, до черных мергелей и толстоплитчатых аргиллитов с редкими прослоями мелкозернистых песчаников; вверху наблюдаются единичные прослои зеленоватых аргиллитов и песчаников с налетами окислов марганца;

е) 30-40 метровой пачкой сизо-зеленоватых мергелей и аргиллитов с включениями линзовидных прослоев и булообразных стяжений серых плотных известняков и алевролитов. Подробное изучение фораминифер из этой части разреза суховской свиты и переходных слоев показало, что они содержат враконские планктонные и бентосные фораминиферы. В частности в пачках, перечисленных кроме планктонных [Globigerinelloides bentonensis (Mor.), Hedbergella debrioensis (Carsey), H. (Asterohedbergella) asterospinosa H am aou, Thalmanninella praebalernensis (Sigal), Th. balernensis (Gand.)], выявлены и агглютинирующие виды: Hormosina crassa Geroch, Glomospirella gaultina (Berth.), Ammodiscus tenuissimus (Gümb.), Plectorecurvoides alternans Noth., Haplophragmoides gigas minor Nause.

Красные аргиллиты, как правило, содержат агглютинирующие Hormosina crassa Geroch, Glomospirella gaultina (Berth.), Ammodiscus tenuissimus (Gümb.), Bathysiphon tautinensis Sacco, Spiroplectammina laevis (Roemer) var. cretacea Cushm., Tritaxia gaultina (Moroz.), Plectorecurvoides alternans Noth, Haplophragmoides gigas minor Nauss, Thalmannammina neocomiensis Geroch., бентосные Parella cretacea Carb., Gyroidina infracretacea Moroz. и в массовых количествах такие планктонные формы, как Planogyrina globigerinellinoides (Subb) и Globigerinelloides ultramicrus (Subb.).

Следует отметить отсутствие характерных видов для сеномана, что ставит под сомнение достоверность приводимых в более ранних работах (Дабагян, Смирнов, 1963) определений сеноманских тальманнинел и роталипор, якобы найденных в переходных слоях. В 1963 г. Н. В. Дабагян за Rotalipora appenninica ошибочно были приняты Thalmanninella balernensis (Gand.) и T. praebalernensis Sigal.

Верхнюю часть разреза суховской свиты можно проследить по р. Кушнице в с. Кушница, где наблюдается следующий восходящий разрез:

*г)* 30 метровая пачка красных и зеленых мергелей и аргиллитов с единичными прослоями песчаников:

 $\partial$ ) 30-40 метровая пачка темно-серых и серых с зеленоватым или голубоватым оттенком карбонатных и некарбонатных мягких аргиллитов и глин (мощность прослоев 0,5-1,5 м), вмещающих редкие прослои (5-15 см) темно-серых и серых глинистых алевролитов и известняков. К этой части разреза иногда (р. Боржава, села Бронька, Липецкая Поляна) бывают приурочены небольшой мощности эндоолистостромовые горизонты. Содержащаяся в породах фауна фораминифер Uvigerinammina jankoi M a j c n., Plectina taylleuri (T a p p.), Haplophragmoides herbichi N e a g u, Praeglobotruncana imbricata (M o r n o d), Globotruncana lapparenti (B r o t z.), G. sigali R e i c h. указывает на их принадлежность к турону;

e) 20 метровая почка голубовато-серых плотных мергелей, красных аргиллитов, алевролитов и глин с характерным для турона комплексом Trochammina globigeriniformis (P. et J.), Dorothia filiformis (Bert.), Plectina grzybowski Neagu.

ж) Самая верхняя часть суховской свиты представлена 40-50 метровой пачкой тонкоритмично переслаивающихся серых и темносерых аргиллитов, алевролитов, редко песчаников и мергелей. Выше согласно залегают толстослоистые песчаники терешовской свиты, выходы которых можно наблюдать в истоках правого разветвления руч. Плыняка и на водоразделе рек Кушницы и Красной.

Заканчивая описание стратотипа в районе с. Суха, уместно подчеркнуть, что общая мощность суховской свиты достигает 210—230 м. Учитывая данные по фауне фораминифер, ее возраст обоснованно можно отнести к вракону-турону. Отсутствие палеонтологических остатков в верхах свиты, позволяет предполагать их возможную принадлежность к низам сенона.

Лектостратотии по руч. Поркулецу. Поркулец — левый приток реки Терешовы (его устье находится в 7 км севернее с. Тарасовки). Изучение разреза суховской свиты по руч. Поркулецу и его притокам, а также по р. Терешове позволяет выделить следующие горизонты:

а) непосредственно на белотисенской свите залегает пачка (около 60 м) черных и темно-серых карбонатных песчанистых аргиллитов с прослоями мергелей, глинистых песчаников, а также характерными для этой части разреза линзами и крупными булообразными стяжениями серых и темно-серых плотных алевритистых известняков. В породах наблюдаются явления подводного оползания осадков, сильная дислоцированность и густая сеть прожилков (1-2 см) кальцита. По всему разрезу отмечено массовое содержание враконских планктонных фораминифер Planogyrina gaultina (Moroz.), P. globigerinellinoides (Subb.), Globigerinelloides bentonensis (Morrow.), Hedbergella deerioensis (Carsey), H. (Asterohedbergella) asterospinosa Hamaoui, Clavihedbergella simplex (Morrow.), Thalmanninella ticinensis (Gand.) Примерно в средней части пачки по р. Терешове в 600 м выше устья руч. Поркулеца, в черных аргиллитах обнаружены головоногие моллюски [Puzosia planulata (Sow.), Sciponoceras baculoides (Mantel), Parahibolites tourtiae (Weigner) и пелециподы Aucellina gryphaeoides
5

Sow.)], позволяющие отнести вмещающие породы к низам сеномана. Однако этот выводне подтверждают фораминиферы, тяготеющие еще к вракону.

6) 30 метровая пачка тонкоритмичных переслаивающихся темносерых, нередко песчанистых аргиллитов, алевролитов и мергелей с единичными прослоями красных аргиллитов в нижней части. В песчанистых аргиллитах обнаружено несколько экземпляров сеноманских *Puzosia* cf. subplanulata (S c h ü l t z e r) (определение Р. И. Л е щ у х). К верхам пачки приурочены небольшие микроолистолиты серых толстослоистых песчаников.

с) 6-8 метровая пачка фукоидных песчанистых мергелей зеленовато-серого и вверху слабо розоватого цвета с редкими прослоями алевролитов. Характерная для нижней части ассоциация верхнесеноманских фораминифер Hedbergella delrioensis (Сагsеу), H. praehelvetica (Trujillo), H. portsdownensis (Will.-Mitch.), H. porculecensis Dab., Thalmanninella deeckei (Fran.), Rotalipora cushmani (Morrow.) кверху сменяется нижнетуронским комплексом Rotalipora cushmani (Morrow.), Praeglobotruncana stephani Gand.), P. delrionensis (Plumm.), P. oraviensis Scheibn. Helvetoglobotruncana helvetica (Bolli), Globotruncana sigali Reich.

По левым притокам руч. Поркулеца вскрывается верхняя часть разреза, в составе которой выделяются:

г) 50 метровая пачка толстоплитчатых зеленовато-серых мергелей с прослоями темно-серых, до черных, песчанистых аргиллитов в нижней части и красными разностями аргиллитов и мягкими глинами, мергелями и тонкослоистыми песчаниками в верхней. В породах встречаются крупные (диаметром до 10 см) конкреции марказита и кристаллы пирита.

 $\partial$ ) 10-15 метровая пачка зеленовато-серых грубослоистых мергелей с характерными для коньяка Globotruncana conica White, G. renzi G and ., G. angusticarinata G and .;

е) мелкогалечные конгломераты и гравелиты, переходящие вверх по разрезу и по простиранию в грубозернистые песчаники. Кластический материал хорошо окатан и состоит из обломков гранитов, амфиболитов, биотитовых гнейсов, полосчатых доломитов и известняков, напоминающих породы Мармарошского кристаллического массива. В конгломератах местами наблюдаются включения неокатанных глыб размером до 0,5 м. Общая мощность грубообломочных пород 10 м;

эс) 30-40 метровая пачка тонкоритмично чередующихся темносерых и серых иногда зеленоватых песчанистых аргиллитов, алевролитов, редко песчаников. В аргиллитах кровельной части пачки выявлены сенонские агглютинирующие Proteonina complanata (Fr.), Trochammina irregularis White, Ammodiscus angusta Fried.

Общая мощность суховской свиты в бассейне руч. Поркулеца не превышает 210 м. Занимаемое сю стратиграфическое положение соответствует вракону-сантону.

Как следует из приведенных описаний стратотипа и лектостратотипа, общий литологический состав слагающих свиту пород меняется незначительно. Почти повсеместно можно выделить три части: а) нижнюю, в основном представленную черными и темно-серыми глинистыми породами с фауной моллюсков; б) среднюю — пестроцветную, состоящую

из пород окрашенных в красные, зеленоватые и темноцветные цвета; в) верхнюю, сложенную серыми алевролитами аргиллитами. Перечисленные горизонты не являются стратиграфически выдержанными и могут менять свои объемы в результате литологофациальных замещений. Это еще раз доказывает неправомерность выделения С.С.Кругловым и С. Е. Смирновым (1979) на южном склоне Ураинских Карпат ,,поркулецкой свиты", включающей пестроцветные породы, так как в разных структурно-фациальных зонах она будет иметь неодинаковые стратиграфические объемы. Отложения суховской свиты кверху переходят в толщу (500 м) грубослоистых серых песчаников терешовской свиты (сенон-низы палеоцена (?), в верхней части разреза которой появляются отдельные пачки мелкогалечных конгломератов, серых мергелей, а также известен маломощный (2 м) горизонт нестроцветных (красных и зеленовато-серых) аргиллитов. Обломочный материал конгломератов (общая мощность грубообломочных пород в бассейне Терешовы достигает 20-25 м) сложен галькой гранитоидов пегматитовой структуры, амфиболитов, диабазов, очковых гнейсов, кварц-серицитовых и хлоритовых сланцев. Интересно, что сходный по составу, обломочный материал наблюдается также в конгломератобрекчиях суховской свиты, в которых кроме упомянутых разностей встречается еще галька и валуны биотитовых гнейсов, полосчатых доломитов, пелитоморфных известняков, конгломератов и кварцитов.

Из средней части терешовской свиты известны находки Hormosina gigantea G e r o c h ; в верхней части разреза установлено присутствие кампанских глоботрункан [G. arca (C u s h m.), G. stuartiformis (D a l b .) и др.). Встреченная фауна и стратиграфическое положение терешовской свиты дают основание отнести ее к сенону-низам палеоцена (?). В последнее время некоторые исследователи (К р у г л о в С. С., 1972) допускают возможную принадлежность верхов терешовской свиты к зоцену. Подобное предположение необосновано палеонтологически и кажется мало вероятным.

Суховская структурно-фациальная зона — крупный скальпированный покров, амплитуда горизонтального перемещения которого превышает 30 км. Внутри покрова закартировано несколько косо расположенных чешуй, сложенных в основном отложениями белотисенской свиты (баррем-альб), а также породами суховской (вракон-сантон) и терешовской (кампан-низы палеоцена) свит. До последнего времени многие геологи полагали, что в основании белотисенской свиты залегает раховская свита (неоком), известная на смежной территории Румынии под названием слоев Синая. В действительности в пределах Суховского покрова выходов раховской свиты нет (в прошлом к ним иногда ошибочно причислялась литологически сходная враконская часть разреза суховской свиты). Неудивительно, что сейчас предположение о наличии и раховских слоев в основании белотисенской свиты вызывает сомнение. Как известно, отложения раховской свиты являются характерными для Раховской структурно-фациальной зоны (sensu stricto), но в пределах последней они перекрываются не белотисенскими слоями, а породами вовчинской свиты (баррем-апт), представленной серым песчаным флишем (мощность 280-350 м) с прослоями и пачками гравелитов и мелкогалечных конгломератов. В качестве стратотина этой свиты рекомендован разрез

274

по руч. Вовчому, левому притоку р. Белой Тисы (район г. Рахова). Таким образом, существенные отличия между меловыми образованиями Раховской и Суховской единиц подтверждают правомерность присвоения им ранга самостоятельных структурно-фациальных зон.

Особого внимания заслуживает вопрос о структурной принадлежности Буркутской единицы, которая представляет собой крупную надвинутую скибу, сложенную буркутскими песчанистыми породами (верхний мел), залегающими на шипотских слоях (баррем-альб) и фациально замещающими пестроцветные отложения яловецкой свиты (сеноман-турон). Некоторые геологи ошибочно причисляют ее к Суховскому покрову и даже иногда на всю Суховскую зону распространяют название "Буркутская зона" (Бызова, Беэр, 1974). В действительности Буркутская единица (ее можно выделить в самостоятельную подзону) является составной частью более северной структурно-фациальной зоны — Петросской (Габинет, Кульчицкий, Матковский, 1976) или Климовской (Кульчицкий, Лозыняк, 1977), особенностью которой является развитие нижнемеловых отложений в фации шипотских слоев.

³ В 1971 г. С. С. К р у г л о в без всякого для этого основания переименовал ее в "Поркулецкую зону". Термин "Поркулецкая зона" является излишним и, учитывая право приоритета, им не следует пользоваться.

### ЛИТЕРАТУРА

- Беэр М. А., Бызова С. Л., Маслакова Н. И. (1968) Верхнемеловые отложения Раховской зоны Советских Карпат. — Вестн. МГУ, № 3.
- Буров В. С. и др. (1971) Геологическое строение и горючие ископаемые Украинских Карпат. Изд-во "Недра", Москва.
- Бызова С. Л., Беэр М. А. (1974) Основные особенности тектоники советской части флишевых Карпат. — Геотектоника, № 6.
- Габинет М. П., Кульчицкий Я. О., Матковский О. И. (1976) Геология и полезные ископаемые Украинских Карпат. Львов, Изд-ео Льсос. ун-та, ч. Ј.
- Дабагян Н. В., Смирнов С. Е. (1963) Нови дани про вик викладив бассейну р. Боржави (Закарпатия). ДАН УРСР, № 4.
  - Кульчицкий Я. О., Лозыняк П. Ю. (1967) Геологическое строение и стратиграфия мела Раховской зоны. В сб. Материалы УІІІ Конгресса КБГА, Белград.
- Круглов С. С., Смирнов С. Е. (1979) Стратиграфия Поркулецкого покрова Украинских Карпат. — Геол. журнал, т. 39, № 2.
- Кульчицкий Я. О., Лозыняк П. Ю., Дабагян Н. В., Мархель М. А. (1965) Геологическое строение и перспективы нефтегазоносности Дуклянской, Магурской и Пенинской зон. Тр. УкрНИГРИ, сб. 14.
  - Лозыняк П. Ю., Пастернак С. И. (1966) Фауна моллюсков новой литолого-фациальной разновидности мела Раховской зоны (Украинские Карпаты). — Палеонт. сб., вып 3, № 3.

### Н. В. ДАБАГЯН и др.

- Лозыняк П. Ю. (1977) Основные черты геологического строения Раховской и Суховской зон Советских Карпат. В кн.: Материалы XI Конересса КБГА. Киев.
- Лозыняк П. Ю., Пастернак С. И. (1971) О возрасте белотисенской свиты (Украннские Карпаты). — Палеонт. сб., № 8, вып. 2.

### ВОПРОС

Ион Жана: Существуют ли в последовательности пластов, напластования уровней типа черных сланцев валанжин-барремского возраста?

Ответ: Не существуют такие напластования; в последовательности отложения зон Сухово существуют отложения типа черных сланцев с микрофауной враконского возраста (?!?)



276

### К КОРРЕЛЯЦИИ ПАЛЕОГЕНОВОГО ФЛИША УКРАИНСКИХ И РУМЫНСКИХ КАРПАТ¹

О. С. ВЯЛОВ², Н. В. МАСЛУН², Я. В. СОВЧИК²

Одной из наиболее важных задач стратиграфии Карпатского флиша является корреляция различных типов палеогеновых отложений. В настоящей статье делается попытка сопоставления основных палеогеновых разрезов северного склона Украинских Карпат и соответствующих им в Румынии разрезов Маргинального покрова (Вранча) и Таркэу. Более внутренние покровы в пограничных районах сложены породами мела, а отложения палеогена имеют локальное развитие и не прослеживаются на смежных территориях, в связи с чем в данной работе не рассматриваются.

Анализ комплексов мелких планктонных и бентосных фораминифер, а также нуммулитов, содержащихся в палеогеновом флише Украинских и Румынских Карпат показал их большое сходство и позволил произвести некоторые сопоставления и развить существовавшие в литературе представления э возрасте и корреляции разрезов.

В Украинских Карпатах к палеоцену относятся верхнестрыйская подсвита, яремчанские слои и песчаники ямненскои свиты (Вялов, 1961; Маслун, 1976; Мятлюк, 1970). Отложения верхнестрыйской подсвиты, представленные тонкоритмичным флишем, содержат, главным образом, агглютинирующие фораминиферы: Carpathiella ovulum var. gigantea (Grzyb.), Rzehakina fissistomata Grzyb., Asanospira grzybowskii (Mjatl.), Trochamminoides ammonoides Grzyb., Glomospira serpens Grzyb., Dendrophrya maxima (Fried.) и редкие Globoconusa daubjergensis Bronn., Globigerina irivialis Subb., Subbotina triloculoindides (Plum.), Planbrotalia pseudobulloides (Plum.), Subbotina varianta (Subb.) и др. (Влялов, 1961; Грузман, Дабагян, Круглов идр., 1966; Маслун, 1976; Мятлюк, 1970).

В залегающих выше по разрезу яремчанских слоях содержится комплекс фораминифер значительно более богатый по видовому составу, чем во флише верхнестрыйской подсвиты. Здесь, кроме появившихся и

² CCCP.



¹ Доклад была представлена на XII-ом Конгрессе Карпато-Балканской Геологической Ассоциации, 8—13 сентября 1981 г., Бухарест, Румыния.

преобладающих в комплексе особей Carpathiella ovulum ovulum (G r z y b.), Hyperammina exilis M jatl., H. intermedia M jatl. встречаются секреционные бентосные и планктонные фораминиферы: Anomalina danica (Brotz.), Cibicides variantus Dab., C. proprius Brotz., Subbotina triloculinoides (Plum.), Globigerina nana Chal.

Несмотря на то, что комплексы агглютинирующих фораминифер яремчанских слоев во многом сходны с комплексами из нижележащих отложений, между ними отмечаются определенные отличия. Различить эти комплексы можно по преобладанию криптокристаллических кремнистых раковин родов Asanospira, Grzybowskiella, Carpathiella. Исчезают характерные для верхнестрыйской подсвиты Carpathiella ovulum gigantea (G e r o c h.) и частыми становятся Carpathiella ovulum ovulum. Dendrophrya maxima (F r i e d .), Hyperammina primitiva M j a t l. сменяются более тонкостенными, меньшими по размерам H. jamnensis M a s l u n, часты в разрезе Rzehakina fissistomata G r z y b. Из крупных фораминифер в яремчанских слоях обнаружены Nummulites deserti и Discocyclina sp.

Для залегающих на яремчанских слоях ямненских песчаников характерна частая встречаемость Hyperammina cylindrica cylindrica (Glaessn.), Cystamminella pseudopauciloculata Mjatl., Recurvoides varius Mjatl., Grzybowskiella angusta (Friedb.), Rzehakina inclusa Grzyb. и др. Отличительной чертой комплекса фораминифер ямненской свиты является развитие большого числа мелких форм агглютинирующих фораминифер, появление видов, которые массовое развитие получили в более позднее время: Recurvoides varius Mjatl., Karreriella horrida Dab., Glomospira saturniformis Majzon и др. Кроме того в ямненской свите присутствуют Globorotalia angulata White, Globigerina nana Chal., Globorotalia velascoensis Cushm.

По видовому составу содержащихся в верхнестрыйской подсвите фораминифер она датируется дат-монсом, а ямненская свита — тенетом.

В Румынских Карпатах аналогичные комплексы фораминифер содержаться в верхней части слоев Путна, Извор. Здесь обильны агглютинирующие фораминиферы: Carpathiella ovulum ovulum (Grzyb.), Hyperammina cylindrica (Glaess.), H. grzybowskii Dylaz: Dendrophrya maxima (Friedb.), Nodellum velascoense (Cuschm.), Rzehakina fissistomata Grzyb., Glomospira serpens Grzyb. и др.

Планктонные фораминиферы более многочисленны и разнообразны в Румынских Карпатах, что позволило Брату (1975) выделить по этой группе зоны: Subbotina triloculinoides [S. pseudobulloïdes (даний), Acarinina incenstans, Globerotalia angulata (монс-тенет), Acarinina acarinata, Globorotalia aequa (G. marginodentata) илердский ярус]. В одновозрастных отложениях Украинских Карпат выделение апалогичных зон невозможно из-за спорадической встречаемости планктонных фораминифер. Условно верхнестрыйская подсвита и ямненская свита сопоставлюятся с зонами Subbotina triloculinoides, Globorotalia angulata.

Нижний зоцен на большей части северного склона Украинских Карпат представлен серо-зеленым, тонкоритмичным флищем манявской свиты, которому на территории Румынских Карпат по возрасту соответствуют нижние горизонты песчаников Таркэу и их базальный горизонт в Маргинальной зоне, слои Стража, нижняя часть слоев Тазлэу в покрове Тазлэу и слои Сучевицы в фации Лешунт-Путна, покров Таркэу. Указанные стратиграфические подразделения содержат около 50 видов агглютинирующих фораминифер, большая часть которых имеет узкий стратиграфический диапазон (Bratu, Alexandrescu, 1970; Tocorjescu, 1960).

Изучение вертикального распространения агглютинирующих фораминифер в манявской свите позволяет выделить ряд слоев. В основании свиты (надъямиенский пестроцветный горизонт по О. С. В я лову) выделяются слон с Hyperammina cylindrica crassa M jatl., Dendrophrya manjavica M aslun. Затем следуют слон с Glomospira, Radiolaria и спикулами губок. В кровле свиты выделяется пачка с пестроцветными аргиллитами, где доминируют Karreriella horrida D ab., Cyclammina intermedia M j tl., Dendrophrya robusta (Grzyb.) (M аслун, 1976).

В монофациальных отложениях нижнего зоцена комплексы агглютинирующих фораминифер аналогичные манявским развиты во всей Скибовой зоне Украинских и Польских Карпат, в покровах Таркэу и Маргинальном Румынских Карпат. В разнофациальных отложениях отмечаются общие элементы, по которым возможно выделение слоев с микрофауной определенного типа, имеющих региональное значение — это слои с Glomospira, Radiolaria и с Karreriella, Dendrophrya и др.

В слоях Стража, в пестроцветных породах нижней части песчаников Таркэу и в базальном горизонте румынскими исследователями (Bratu, 1975; Bratu, Alexandrescu, 1970; Bratu, Gheţa, 1972) указывается обилие тех же видов Glomospira, Hyperammina, Dendrophrya, Karreriella, Radiolaria и спикул губок.

По планктонным фораминиферам нижнезоценовые отложения в Румынских Карпатах выделяются в объеме зон Globorotalia marginodentata и G. aragonensis. Аналогами этих зон в Украинских Карпатах являются слон с Globorotalia aequa, G. marginodentata, охватывающие манявскую свиту.

Нижнезоценовый возраст коррелируемых толщ подтверждается крупными фораминиферами идентичного видового состава: Nummulites planulatus, N. burdigalensis, N. partschi и др. Нуммулиты не обнаружены только в слоях Стража, но именно слои Стража содержат наибольшее количество агглютинирующих фораминифер сходного видового состава с комплексами из манявской свиты.

Наиболее характерным литофациальным типом среднезоценовых отложений пограничных районов Украинских Карпат являются песчаники выгодской свиты, которые соответствуют верхним песчаникам Таркзу, верхней части слоев Тазлзу и Кольци (I o n e s i, 1966). О среднезоценовом возрасте коррелируемых отложений свидетельствует богатый комплекс нуммулитид: N. gallensis, N. distans, N. murchisoni, N. globulus, N. laevigatus и др. С сопоставимости указанных комплексов говорит также общность видового состава бентосных секреционных фораминифер родов Cibirides агглютинирующих фораминифер родов Dendrophrya, Grzybowskiella, Cyclammina, Trochamminoides, Cystamminnella и планктонных видов Globigerapsis subconglobatus, Subbolina frontosa, Acarinina bullbrooki. Как в Румынских, так и в Украинских Карпатах в среднем зоцене выделяются слои с Cibicides, Nummulites. В тех раз-



резах, когда в выгодских песчаниках появляются многочисленные некарбонатные глинистые прослоп в них доминируют агглютинирующие фораминиферы: Dendrophrya, Cystamminella, Psammosphaera.

По планктонным фораминиферам эти отложения соответствуют зонам Acarinina bullbrooki, Hantkenina liebusi (Румынские Карпаты) и A. bullbrooki—Hantkenina alabamensis (Украинские Карпаты).

Что касается пасечнянских известняков и мергелей буковинских слоев, то на территории Румынии они имеют литофациальные аналоги, что позволяет проводить прямую корреляцию: пасечнянской свите отвечают известняки Доамна, а буковинским слоям — слои Вицеу. Те и другие содержат типичные среднезоценовые N. laerigatus, N. gallensis, N. perforatus, N. atacicus и др. (T ă t ā r â m, 1968).

В пограничной южной части Скибового покрова развит груборитмичный песчаный флиш, который находится на продолжении фации типа разреза Таркэу, столь распространенного в покрове Таркэу Румынии, что также не вызывает сомнений при корреляции. В кернах скважины Плоскоя — І в верхней части разреза песчаников были обнаружены N. millecaput, что позволило датировать вмещающие породы верхами среднего эоцена. В аналогичных условиях комплекс нуммулитов с Nummulites millecaput был найден и в покрове Таркэу.

Верхняя часть эоценовых отложений на северном склоне Украинских Карпат представлена разнофациальными породами, которые выделены в быстрицкую, попельскую и довжинскую свиты.

Довжинская свита развита в крайних южных скибах, представлена толстослоистыми массивными слюдистыми песчаниками с маломещными прослоями алевролитов и аргиллитов. В верхней части разреза этой свиты обнаружены типичные верхнезоценовые нуммулиты: Nummulites fabiani, N. chavannesi, N. retiatus.

Попельская свита имеет ограниченное распространение в северных скибах и повсеместно развита во внутренней зоне Предкарпатского прогиба. Она замещает в большей или меньшей степени нижнюю часть быстрицкой свиты. Представлена попельская свита известковистыми породами — аргиллитами и даже мергелями, всегда с примесью алевритового материала. Она содержит известковистые бентосные фораминиферы: Asterigerina rogalai M j atl., Cibicides popeliensis M j atl., C. tallahattensis M j atl., C. coniferus M j atl., Urigerina jacksonensis C u s c h., Nonion halkyardi C u s c h m., Grammostommum nobilis (H a n t k e n), G. elongatum (H a n t k e n), Bulimina sculptilis C u s c h m., Planulina costata (H a n t k e n), Globigerapsis index (F i n l a y), Turborotalia centralis (C u s h m. et B e r m.), Subbotina eocaenica (T e r q.) и др.

Быстрицкая свита — основная фация этого стратиграфического уровня. Она сложена некарбонатными зеленовато-серыми аргиллитами с прослоями алевролитов и песчаников. Повсеместно в основании свиты прослеживается пестроцветный горизонт. Комплекс фораминифер состоит уз агглютинирующих видов: Silicobathysiphon pseudoloculus M j a t l., Hyperammina lineariformis M j a t l., H. karpatica M a s l a c., Reophax planus H a l k., Ammodiscus latus G r z y b., Grzybowskiella subangusta M j a t l., Gr. macilenta M j a t l., Asanospira walteri G r z y b., Cyclammina amplectens G r z y b., C. rotundidorsata (H a n k t e n), Tro-

chamminoides subtrullisatus (Rz. et G.), Spiroplectammina spectabilis Grzyb. Наиболее характерными видами являются: Cyclammina amplectens, C. rotundidorsata, Ammodiscus latus, Asanospira walteri.

В Румынии этим отложениям соответствуют в элементе Таркэу слон Поду-Секу, в элементе Тазлэу — слон Плопу и в Маргинальном покрове — слои Биссерикани. Во всех перечисленных слоях содержится богатый комплекс агглютинирующих фораминифер: Dendrophrya robusta G r z y b., Cyclammina amplectens G r z y b., Ammodiscus latus (G r z y b.), Haplophragmoides (= Asanospira) walteri (G r z y b.), Reophax planus H a l k y a r d, Saccammina placenta (R e u s s).

Удельный вес планктонных фораминифер в комплексе верхнезоценовых отложений Украинских Карпат сравнительно низок. Условно можно выделить только слои с *Globigeropsis index*, которые соответствуют верхней части быстрицкой свиты.

В Румынских Карпатах по массовому развитию планктонных фораминифер выделены воны Globigerapsis tropicalis и G. index. Несмотря на некоторые различия видового состава агглютинирующих и плактонных фораминифер мы можем говорить о прямой корреляции слоев Поду-Секу, Плопу, Биссерикани и с быстрицкой и попельской свитами. Верхняя часть указанных литостратиграфических подразделений всеми исследователями датируется поздним зоценом. Возраст же нижней части понимается не однозначно.

Нами принимается позднезоценовый возраст быстрицкой, свиты. Однако в низах ее фациального аналога — попельской свите в разрезе на р. Опур указываются (Мятлюк, 1970) находки Acarinina bullbrooki, A. rotundimarginata, что делает возможным предположение о том, что самая нижняя часть свиты может еще озносится к среднему зоцену. В прочем, с другой стороны, в богатом комплексе фораминифер в пестроцветном горизонте в основании быстрицкой свиты наравне с другими имеются и те виды агглютинирующих фораминифер, которые численно преобладают в верхней части быстрицкой свиты: Cyclammina rotundidorsata (Hantken), Ammodiscus latus Grzyb., Asanospira wal-

Grzyb.), Hyperammina lineariformis и др.

Во всяком случае большая верхняя часть — несомненный верхний зоцен. Это доказывается наличием в попельской свите таких характерных форм как Globigerapsis index, Subbotina eocaena, Turborotalia centralis и др., а в довжинской фации — типичный верхнезоценовых нуммулитов — Nummulites fabiani. Списки моллюсков верхезоценового возраста из попельской свиты приводит В. Рогаля. Все же вопрос о возрасте пестроцветного горизонта остается для нас не ясным.

Румынские геологи неоднозначно датируют нижнюю часть разрезов слоев Биссерикани, Стружиноаза, Поду-Секу и др. В одной из последних сводок (Săndulescu, Ștefănescu, 1981) слои Биссерикани отнесены к верхнему зоцену, а пестроцветный горизонт в их основании к верхам среднего зоцена. Отнесены к верхам среднего зоцена и нижняя часть слоев Плопу и Поду-Секу, где пестроцветы отсутствуют. В то же время в другой сводке (II) слои Биссерикани, Плопу и Поду-Секу — это только приабон. Е. Брату указывает на массовое развитие *Cyclammina аmplectens* в пестроцветных отложениях и датирует их средним эоценом.

Несколько слов следует сказать о вертикальном распространении Cyclammina amplectens (s.l.), характерной для быстрицкой фации и цитируемой из Польских и Румынских Карпат.

В Украинских Карпатах виды рода *Cyclammina* в эоценовом флише распределены по всему разрезу. Первые представители этой группы поя-

### РУМЫНИЯ

### ПОКРОВ ТАРКЗУ

#### КАРПАТЫ, СКИБОВАЯ ЗОНА



вляются в нижнем роцене (манявская свита) — это Cyclammina amplectens var. ornamenta D a b a g j a n in lit. и I. intermedia M j a t l. Последний вид встречается и в выгодской свите. Вид Cyclammina ample-



282

О. С. ВЯЛОВ и др.

ctens Grzyb. в единичных экземплярах отмечается в выгодской свите, но массовое развитие его наблюдается в быстрицкой свите. *Cyclammina placenta* (Reuss) встречается по всему разрезу быстрицкой свиты. Вид *Cyclammina rotundidorsata* (Hantken) приурочен к верхней части быстрицкой свиты. Наибольшего расцвета виды рода *Cyclammina* достигают в позднебыстрицкое время и основной вид этой группы — *Cyclammina amplectens* является у нас весьма характерным для быстрицкой свиты. В литературе по Румынским Карпатам он указывается начиная с сенона (слои Присака) до верхнего эоцена слои Плопу, Поду-Секу, Биссерикани, Струженоаза). Быть может, там вид *Cyclammina amplectens* понимается в очень широком объеме без выделения форм, мало известных в литературе, появившихся на более низком стратиграфическом уровне. Корреляция отложений, из которых он приводится, должна поэтому проводится с учетом всего комплекса мелких и крупных фораминифер.

Под пестроцветными слоями Стружиноаза, в самых верхах литофации Колци и Тазлэу встречен комплекс нуммулитид, характерный для самых верхов среднего эоцена (биаррица) — Nummulites jonesi и N. millecaput и др. Эти же виды обнаружены в аналогах верхов песчаников Таркэу в скважине Плоское-I в юго-восточной части Скибовой зоны, недалеко от границы с Румынией. Таким образом, по данным нуммулитид, породы залегающие под пестроцветным горизонтом быстрицкой свиты и Стружиноаза относятся к верхам среднего эоцена, пестроцветный горизонт (см. рис.) находится на границе среднего и верхнего эоцена, но возраст его остается неясным.

Повсеместно в Украинских Карпатах и в Румынских Карпатах в кровле верхнего зоцена выделяется мергельный шешорский горизонт или зона крупных глобигерин. Эти отложения характеризуются изменением систематического состава фораминифер по сравнению с нижележащими. В разрезах всех структурно-фациальных зон Карпат агглютинирующие фораминиферы весьма редки, а в комплексе доминируют планктонные: Catapsydrax dissimilis, Subbotina corpulenta, S. pseudoeocaena, S. yeguensis, S. praebulloides leroyi, S. tripartita.

Корреляция олигоценовых отложений из-за недостаточности палеонтологических данных проводится, главным образом, по литофациальным признакам (Совчик, 1976).

### ЛИТЕРАТУ РА

Вялов О. С. (1961) Палеогеновый флиш северного склона Карпат. — Киев: Изд-во АН УССР, 135 с.

Грузман А. Д., Дабагян Н. В., Круглов С. С. и др. (1966) Унифицированные схемы стратиграфии верхнемеловых и палеогеновых отложений Украинских Карпат. — Палеонт. сд., вып. 2, Ju 3, с. 140—141.

Маслун Н. В. (1976) Биостратиграфическая характеристика нижнезоценовых отложений Внутренней зоны Предкарпатского прогиба. -геол. журк., т. 36 вып. 2, с. 107—114.

284

Institutul Geologic al României

- Мятлюк Е. В. (1970) Фораминиферы флишевых отложений Восточных Карпат (мел — палеоген). — Л.: *Hedpa*, 358 с.
- Совчик Я. В. (1976) К сопоставлению палеогенового флиша Украинских и Румынских Карпат. Геол. жури., т. 36, вып. 6, с. 43—50.
- Bratu E. (1975) Coupe du maestrichtien a l'Oligocène inférieur dans le flysch externe de Cuejdiu (Bassin de la Bistrița), - 14 the European micropaleontological Colloquium. -Romania, p. 135 - 140.
  - Alexandrescu G. (1970) Date stratigrafice şi micropaleontologice asupra stratelor de Hangu şi a stratelor de Stroia din valea Bistriței (Carpații Orientali). Stud. cerc. geol., geofiz., geogr., ser. geol. 2, t. 15, p. 451 468. Bucureşti.
  - Gheţa N. (1972) Zonarea depozitelor în facies de Şotrile ale Paleocen eocenului (Carpații Orientali), pe baza foraminiferelor planctonice şi a nannoplanctonului calcaros. Stud. cerc. gcol. geofiz., geogr. ser. geol., 1, t. 17, p. 323 – 334. Bucureşti.
- I o n e s i L. (1966) Contribuții asupra limitei cretacic paleogen din zona flișului extern al Carpaților Orientali. Anal. șt. ale Univ. Al. I. Cuza, vol. 12, p. 63 – 72. Iași.
- Săndulescu M., Ștefănescu M. et al. (1981) Genetical and Structural relations between flysch and Molasse (The east Carpatians Model) - Guide to Excursion A 5. Carpatho-Balcan Geological Association, XII Congress, Romania-Bucharest 1981.
  - Krāutner H. G. et al. (1981) The Structure of the East carpathians (Moldavia-Maramureş Area). Guide to Excursion B₁ Carpatho - Balcan Geological Association, XII Congress, Bucharest-Romania 1981.
- Tătārim N. (1968) Virsta gresiei de Corbi din Paleogenul Depresiunii Getice. Stud. cerc. geol., geofiz., geogr., ser. geol., 1, t. 13, p. 157 - 160. București.
- Tocorjescu M. (1960) Considerații micropaleontologice asupra limitei Cretacic-Eocen. Stud. cerc. geol., geograf. ser. geol.2 t. 5, p. 273 - 297.





### ЗОНАЛЬНАЯ КОРРЕЛЯЦИЯ ПАЛЕОГЕНОВЫХ ОТЛОЖЕНИЙ УКРАИНСКИХ КАРПАТ ПО МЕЛКИМ ФОРАМИНИФЕРАМ¹

### О. С. ВЯЛОВ², Л. Д. ПОНОМАРЕВА²

В основу большей части стратиграфических подразделений палеогеновых отложений Украинских Карпат положены исследования микрофауны. Терригенный флиш содержит преимущественно агглютинирующий бентос, в карбонатно-терригенных образованиях встречается так же и секреционный бентос. К карбонатным породам приурочены находки планктонных фораминифер, иногда в массовых количествах.

Зональная стратиграфия палеогена, как по планктону, так и по бентосу, нашла свое отражение в работах Маслаковой (1955, 1957), Мятлюк (1950, 1970), Маслун (Иваник, Маслун, 1977; Маслун, 1979), Грузман и Дабагян (1979). Однако схемы, разработанные ими для отдельных районов развития палеогеновых отложений Украинский Карпат, до настоящего времени разобщены, а ряд выделенных биостратиграфических единиц нуждается в пересмотре с точки зрения современного понимания их ранга и возрастного объема. В связи с этим давно назрела необходимость обобщения имеющихся данных по биозональному расчленению палеогена в виде единой сводки, включающей сопоставление планктонных зон с бентосными ассоциациями, что безусловно, увеличит стратиграфическую ценность последних.

В качестве эталонной принята зональная шкала Средиземноморья. При сопоставлениях с зарубежными Карпатами имеются определенные трудности, заключающиеся прежде всего в том, что подобные зональшые схемы или сводки разработаны для отдельных структурно-фациальных единиц и подчас имеют существенные различия. Кроме того существуют разногласия в понимании зональных видов, стратиграфического объема зон и принципов их выделения. Поэтому на данном этапе исследований возможны лишь сравнения отдельных зональных схем на уровне подотделов палеогена.

Для Румынских Карпат использована схема фации Шотриле (Восточные Карпаты), как наиболее полная по планктону (Bratu, Ghe-



¹ Доклад была представлена на XII-ом Конгрессе Карпато-Балканской Геологической Ассоциации, 8—13 сентября 1981 г., Бухарест, Румыния.

² CCCP.

ta, 1972) и схема для внешнего флиша Краевой единицы, где выделяются ассоциации планктонных и бентосных фораминифер (Bratu, 1975). В Словацких Карпатах детально разработана сводная зональная схема для палеогенового флиша по планктону и бентосу (S a m u e l, Borza, Köhler, 1972; Samuel, 1973). Польские исследователи в целом ве склонны выделять в карпатском флише какиелибо биостратиграфические единицы, отдавая предпочтение xaрактерным комплексам. Однако в последней работе Б. Ольшевской (Olszewska, 1980) приеводится биозональная схема для палеогена Дукельской единицы по планктону. Бентосные ассоциации фораминифер подробно изучены в Скольской единице (Morgiel, Szymakowska, 1978). Эти данные и были приняты за основу при сравнении с Польскими Карпатами.

В Украинских Карпатах относительно полное биозональное расчленение палеоцена и зоцена имеется для Мармарошской структурнофациальной единицы (Грузман, Дабагян, 1979), хотя сами авторы считают эту схему несколько условной в силу сложного геологического строения района, прерывистости разрезов и других причин. В качестве основного разреза, в котором выделены биостратиграфические единицы по бентосу, может быть взят сводный разрез Скибовой зоны. Основная суть работы заключена в таблице. В тексте остановимся лишь на некоторых комментариях и дискуссионных вопросах.

В последнее время широкое распространение как в СССР, так и в других странах получила точка зрения о необходимости причисления датского яруса к палеогену. Анализ фауны из пограничных слоев мела и палеогена в непрерывных разрезах на северном склоне Украинских Карпат позволяет присоединиться к такому мнению. Комплекс планктона, найденный в верхней части стрыйской свиты и ее аналогах в других зонах, содержит набор видов, типичный для дания Средиземномория, юга СССР и карпатского региона в целом. Однако подразделить его на зоны у нас пока не представляется возможным. В составе комплекса установлены: Globigerina trivialis S u b b., G. pseudobulloides P l u m m., G. microcellulosa M or oz., G. varianta S u b b., G. quadrata White, Subbotina triloculinoides (P l u m m.), Acarinina inconstans S u b b., Globorotalia compressa (P l u m m.), Globoconusa daubjergensis (B r o n n).

Отличительную особенность нижнепалеоценовой зоны Globorotalia angulata, выделенной только в метовской свите Мармарошской единицы, составляет появление большого числа представителей зонального вида на фоне комплекса, в котором преобладают еще типично датские фораминиферы. Кроме Globorotalia angulata здесь встречены Globigerina varianta (Subb.), G. trivialis Subb., Subbotina triloculinoides (Plumm.), S. nana (Chalil.), Globorotalia compressa (Plumm.), Acarinina inconstans Subb. и др. Немногочисленные экземпляры Globorotalia angulata, найденные в ямненской свите, относящейся к верхнему палеоцену (Скибовая единица), и в ее возрастном аналоге лютской свите (Дуклянская единица) не могут служить основанием для выделения здесь биостратиграфической зоны с упомянутым зональным видом, как это было сделано в свое время Н. И. Маслаковой, а вслед за ней и другими авторами.

Institutul Geologic al României

288

Верхний палеоцен метовской свиты А. Д. Грузман и Н. В. Дабагян охарактеризовали зоной Globorotalia pseudomenardii (по появлению многочисленных экземпляров этого вида), считая ее аналогом зоны G. velascoensis средиземноморской шкалы. Сама G. velascoensis здесь не обнаружена. Сопутствующими видами являются: Globorotalia elongata Boli. G. aequa Cushm. et Renz., Acarinina acarinata Subb., A. Subsphaerica Subb., A. triplex Subb., Subbotina triloculinoides (Plumm.), S. quadritriloculinoides (Chalil.), S. nana (Chalil.). Многочисленный верхнепалеоценовый планктон был найден в Скибовой зоне (Грузман, Портнягина, 1976) в разрезах рек Рушора, Брустурки, Серетеля и др. Авторы считают его аналогом нижней части зоны Acarinina subsphaerica Крымо-Кавказской области. По современным представлениям это скорее всего аналоги зоны G. velascoensis. Подобные комплексы планктона с Globorotalia pseudomenardii Bolli, G. marginodentata (Subb.), Subbotina nana (Chalil) и др. известны в Дуклянской зоне в басс. р. Дусинки (Лозыняк, 1971) и в олистолитах пор. Абранке (материалы авторов).

По бентосным фораминиферам разделить палеоцен на нижний и верхний и отграничить его от датского яруса пока не удается. Большая часть разрезов датско-палеоценовых отложений представлена терригенными слабо карбонатными разностями пород, содержащими ассоциацию фораминифер с Hormosina ovulum ovulum, Rzehakina epigona, Rzehakina fissistomata, Modellum velascoense. В более карбонатных породах иногда развит комплекс секреционного бентоса с характерными видами Stensioina caucasica и Anomalinoides danicus.

В метовской свите Мармарошской единицы выделяются две нижнезоценовых зопы. Первая из них — Globorotalia subbotinae, кроме зонального вида представлена многочисленными Globorotalia marginodentata S u b b ., Acarinina acarinata S u b b ., A. triplex S u b b ., Subbotina triloculinoides (Plumm.), S. quadritriloculinoides (Chalil.). Вторая зона Globorotalia aragonensis cogepжит Globorotalia lensiformis S u b b ., Globigerina pseudoeocaena S u b b ., G. boweri Bolli, Acarinina pentacamerata S u b b ., A. acarinata S u b b ., A. interposita S u b b ., A. triplex S u b b . Здесь появляются единичные Acarinina pseudotopilensis S u b b ., A. bullbrooki Bolli и др.

Значительно раньше рассматриваемые зоны были выделены Н. И. Маслаковой (1955) на южном склоне Карпат и без достаточных оснований распространены на всю их территорию. Пользоваться этими материалами трудно, так как они не привязаны к конкретным разрезам. Вслед за Н. И. Маслаковой эти исследования были продолжены и конкретизированы Н. В. Дабагян (Кульчицкий, Лозыняк, Дабагян ... 1965), установившей в эоцене Дуклянского покрова ряд планктонных зон. Правда, следует оговориться, что по современным представлениям большая часть пород, вмещающих обильный планктон, принадлежит к олистолитам.

В нижнем зоцене повсеместно во всех структурно-фациальных зонах (в манявской свите и ее аналогах) присутствует характерная ассоциация бентосных фораминифер с Glomospira charoides (Park et Jones), Recurvoides smugarensis Mjatl., Karreriella horrida Dab. и др.

3

Зона Acarinina bullbrooki прослеживается в Мармарошской единице, в той же метовской свите, где вместе с зональным видом встреченомножество Acarinina pentacamerata Subb., A. acarinata Subb., A. pseudotopilensis Subb., Globigerina pseudoeocaena Subb., G. posttriloculinoides Chalil., G. frontosa Subb. и единичные Globorotalia aragonensis Nutt., Globigerapsis kugleri Bolli, Loebl. et Таррап. В Дуклянской единице известны находки многочисленного планктона зоны A. bullbrooki в пестроцветах (скорее всего это олистолиты) бассеина Латорицы (материалы Н. В. Дабагян и авторов). Кроме того она установленна и в корениом разрезе в одном из правых притоков реки Дусинки (Габинет, Кульчицкий,... 1976). Наконец Е. В. Мятлюк (1970) указывает на наличие массовых количеств Acarinina bullbrooki и Acarinina rotundimarginata в пестроцветном горизонте в основании быстрицкой свиты и низах ее попельской фации (Скибовая единица) и считает возможным выделить здесь зону Acarinina rotundimarginata. Названные виды характеризуют две самостоятельные зоны, относящиеся к низам среднего эоцена, что в целом не увязывается с положением быстрицкой свиты в сводном разрезе. К среднему эоцену здесь относятся выгодская и пасечиянская свиты, лежащие ниже. Поэтому вопрос об аналогах зон А. bullbrooki и А. гоtundimarginata в Скибовой единице приходится оставить открытым.

В среднем эоцене Мармарошской единицы прослеживается еще одна зона — Hantkenina albamensis. Кроме зонального вида здесь встречены многочисленные Globigerapsis kugleri Bolli, Loebl. et T a p p a n, Acarinina bullbrooki Bolli, Globigerina pseudoeocaena S u b b. и единичные Truncorotaloides rohri Bronn. et Truncorotaloides rohri Bronn. et Berm., Globanomalina micra (Cole).

Бентосные фораминиферы среднезоценовых отложений Украинских Карпат (большей частью это массивные песчаники) не отличаются особым разнообразием, позволяющим выделять здесь какие-либо характерные комплексы. Лишь на северном склоне в средней и верхней частях пасечнянской и выгодской свит отмечен своеобразный секреционный бентос с коническими цибицидоидесами: Cibicidoides westi (Howe), C. ventratumidus (Mjatl.), C. grossoconulus (Mjatl.).

Планктон, найденный в верхней части метовской свиты, позволил А. Д. Грузман и Н. В. Дабагян выделить здесь две верхнезоценовых зоны — Globigerapsis index и Globigerina corpulenta. Первый из названных видов встречен в массовых количествах совместно с єдиничными Globigerapsis rubriformis (Subb).), Globigerina corpulenta (Subb.). Е. В. Мятлюк (1970) указывает на присутствие большого числа экземпляров этого вида [Globigerinoida index (Finl.)], в попельской свите Скибовой зоны.

Вторая верхнезоценовая зона Globigerina corpulenta охватывает стратиграфический горизонт, известный под названием шешорский или горизонт крупных глобигеринид, имеющий широкое распространение в пределах всей карпатской дуги. Мергелистые породы этого горизонта буквально переполнены планктоном. Среди него преобладают Catapsidrax dissimilis (Cushm. et Berm.), Globigerapsis index (Finl.), Globigerina corpulenta Subb., G. galavisi Bermud., Subbotina eocaenica eocaenica (Terq.), S. eocaenica irregularis (Subb.).

290

Основыным показателем верхнезоценового возраста пород по бентосу в Украинских Карпатах обычно считалась ассоциация агглютинирующих фораминифер с Cyclammina amplectens, приуроченная к быстрицкой свите Скибовой зоны. Отложения с подобной ассоциацией в других тектонических зонах рассматривались как аналоги быстрицкой свиты и относились к верхнему эоцену. Однако со временем практика исследований показала, что комплекс с C. amplectens встречается и ниже по разрезу, подчас совместно со среднезоценовым планктоном и нуммулитами. В Польских и Словацких Карпатах (Morgiel, Szymakowska, 1978; Samuel, 1973), Cyclammina amplectens характеризует средний зопец, а в верхнем развита Cyclammina rotun-Маслун (1979) считает, что объем вида Cyclammina amdidorsata. plectens понимается слишком широко. Онхарактерен только для верхнего эоцена, а ниже встречаются Cyclammina amplectens var. ornamenta Dabag. и Cyclammina intermedia Mjatl. А. Д. Грузман и Н. В. Дабагян (1979) отмечают присутствие Cyclammina amplectens с сопутствующими Asanospira walteri и Hyperammina lineariformis по всему разрезу среднего и верхнего эоцена (метовская свита, Мармарошская зона). Из сказанного следует, что ассоциация фораминифер с Cyclammina amplectens сама по себе вопроса о возрасте однозначно не решает, а разногласия по поводу ее вертикального распространения требуют специальных дополнительных исследований.

В олигоценовых отложениях Украинских Карпат микрофауна встречается большей частью спорадически, однако в процессе многолетних исследований здесь выявлен достаточно многочисленный секреционный бентос и планктон. Зональное подразделение олигоцена затруднено, так как планктонные фораминиферы не особенно богаты в систематическом отношении и незначительно меняются по вертикали.

В основании менилитовой толщи Скибовой, Кросненской и Дуклянской зон в подроговиковой части разреза прослеживается горизонт с мелкими глобигеринами, резко отличающимися по своему составу от комплекса крупных глобигерин подстилающего шешорского горизонта. Эта часть разреза выделяется в местную зону Globigerina officinalis, Subbotina vialovi u Planorbella (Вялов, Дабагян, Мятлюк ... 1965). Именно по смене этих комплексов и по границе шешорского горизонта и подроговиковой части менилитовых слоев проводится граница между эоценом и олигоценом в Украинских Карпатах.

В нижних частях менилитовой и кросненской олигоценовых толиц встречаются Globigerina officinalis Subb., G. praebulloides Blow, Globorotalia pseudoscitula Glaessn., G. brevispira Subb., Cibicidoides lopjanicus (Mjatl.), Elphidium karpaticum Mjatl., Uvigerinella majkopika Kraeva. Выше по разрезу известны Globigerina ampliapertura Bolli, G. angustiumbilicata Bolli, G. ciperoensis Bolli, G. pseudoedita Subb., Cibicidoides amphysiliensis (Andr.), Baggatella altiuscula Subb. и др. (Грузман, 1972, Андреева-Григорович, Грузман, 1978).

Неоходимо отметить, что по последним представлениям А. Д. Грузман (1981) большую часть упомянутых толщ следует отчленить от олигоцена, так как в среднекросненской и среднеменилитовой

5

(лопянецкой) свитах установлена миоценовая микрофауна. На наш взгляд такое решение имеет свои неясные стороны и не может считаться окончательным.

### ЛИТЕРАТУРА

- Андреева Григорович А. С., Грузман А. Д. (1978) О комплексах фораминифер и нанопланктона в) стратотине менилитовой свиты по р. Чечве (УССР). Палеонтол. сб., № 15, с. 83—89.
- Вялов О. С., Дабагян Н. В., Мятлюк Е. В., Пишванова Л. С. (1965) О шешорском горизонте в Восточных Карпатах. — Мат-лы VI съезда КБГА, Докл. сов. геологов. Киев, Наук. думка, с. 157—163.
- Габинет М. П., Кульчицкий Л. О., Матковский О. И. (1976) Геология и полезные ископаемые Украинских Карпат. — "Вища школа", Львов 200 с.
- Грузман А. Д. (1972) Распределение мелких фораминифер в олигоценовых отложениях сев. западной части Украинских Карпат. Палеонт. сб., № 9,. вып. I, с. 17-22.
  - Дабагян Н. В. Зональная стратиграфия по планктопным фораминиферам палеоцена и зоцена южного склона Украинских Карпат. — Палеонтол. сб., 1979, № 16, с. 30—34.
  - Портиягина Л. А. (1976) Новые данные о границе мела и палеогена в Скибовой зоне Украинских Карпат. *Палеонт. сб.*, № 13, с. 90—93.
  - Стратиграфическое значение рода Globigerinoides для олигоцен-мноцена Скибовой зоны Украинских Карпат. — Палеонт. сб., № 18, с. 5—8.
- Дабагян Н. В., Кульчицкий Я. О. (1980) О возрастных границах верхнего мела в Восточных Карпатах. — Мат-лы XI Конгресса КВГА, стратиграфия, Кнев, с. 49—57.
- Крашенинников В. А., Немков Г. И. (1975) Соотношение фаун планктопных фораминифер и нуммулитов в палеогеновых отложениях Сирии. — Вопросы микропалеонт., вып. 18.
- Кульчнцкий Я. О., Лозыняк П. Ю., Дабагян Н. В., Мархель М. Д. (1965) Геологическое строение и перспективы нефтегазоносности Дуклянской, Магурской и Пенинской зон. — Труды УкрНИГРИ, вып. XIV. с. 69—86.
- Лозыняк П. Ю. (1971) Стратиграфия. Дуклянская зона. В кн. "Геологич. строение и горюч. ископ. Украинских Карпат", "Недра", с. 156—163.
- Маслакова Н. И. (1955) Стратиграфия и фауна мелких фораминифер палеогеновых отложений Восточных Карпат. — Мат-лы по биостратигр. западн. обл. Украины, Москва, с. 5—132.
- Маслун Н. В. (1979) Сопоставление палеоцен-эоценовых отложений северного склона Украинских Карпат и сопредельных территорий по фораминиферам. — Геол. журнал, т. 39, № 5, с. 32—37.
- Bratu E., Gheţa N. (1972) Zonarea depozitelor în facies de Șotrile ale Paleocen-Eocenului (Carpații Orientali) pe baza foraminiferelor planctonice și a nannoplanctonului calcaros. Slud. și cerc. de geol., geofiz., geogr. Ser. geol., 1, t. 17, p. 323 - 334.

### ЗОНАЛЬНАЯ КОРРЕЛЯЦИЯ ПАЛЕОГЕНОВЫХ ОТЛОЖЕНИЙ

- (1975) Coupe du maestrichtien à l'Oligocène inférieur dans le flysch externe de Cuejdiu (bassin de la Bistrița). 14th Europ. micropaleontol. collog. Guid, excursion J. Bucharest, p. 135 - 141.
- Morgiel J., Szymakovska F. (1978) Stratigrafia paleocenu i eocenu jednostki Skolskiej. – Biul. Inst. geol., t. 22, n. 310, 39 – 71.
- Olszewska B. (1980) Stratigrafia osadow kredy górnej i paleogenu w centralnej czesci jednosti Dukielskiej na podstawie otwornic. Biull. Inst. geol., t. XX, n 326, s. 58 102.
- Samuel O. (1973) Paleogeografický náčrt a prejavy orogenetyckých fáz v paleogene Západných Karpát Slovenska a v prilahlej časti Madars keho Stredohoria. – "Geol práce", správy 60, Bratislava, s. 55 – 83.
  - Borza K., Köhler (1972) Microfauna and Lithostratigraphy of the Paleogene and adjacent Cretaceous of the Middle Vah Valley (West Carpathian). Bratislava, 246 s.



a - . . . - . . .

there a

С.О. ВЯЛОВ, Д.Л. ПОНОМАРЕВА. Зональная корреляция Палеогеновых отложений Украинских Карпат по Мелким Фораминиферам.																
	<   C	СТРАТИГРАФИЧЕСКАЯ ШКАЛА ПАЛЕОГЕНА СРЕДИЗЕМНОМОРЬЯ			УКР	АИНСКИЕ		КАРПАТЫ			РУМЫНСКИЕ КАРПАТЫ		СЛОВАЦКИЕ КАРПАТЫ		ПОЛЬСКИЕ КАРПАТЫ	
TAI	<pre>4 Г</pre>			MAPMAPOWCKAR 30HA		<b>ДУКЛЯНСКАЯ ЗОНА</b>		СКИБОВАЯ ЗОНА			ФАЦИЯ ШОТРИЛЕ	KPAEBAR 30HA			<b>АЧКЕЛЬСКАЯ</b> ЕДИНИЦА	СКОЛЬСКАЯ
0 1 4	И ОКЕАНОВ Крашенинников, Немков, 1975		кеанов в, Немков, 1975	Трузман, Дабагян, 1979		Кульчицкий, Лозыняк, Dабагян, 1965 Кульчицкий, Dабагян, 1980 Маслакова, 1955; материалы авторов		Андреева-Григорович, Гризман, 1978; Гризман, Портнягина, 1976; Вялов, Дабагян, Мятлюк1965; Мятлюк, 1970; материалы авторов		р <b>тнягина</b> , 970;	Bratu, Gheța, 1972	Bratu, 1975	Samuel, 1973		Olszewska, 1980	Morgiel, Szymakowska, 1978
C	=			планктон	5 E H T O C	планктон	<b>BEHTOC</b>	планктон	5 E H T O C	СВИТЫ	ПЛАНКТОН	ΠΛΑΗΚΤΟΗ, БΕΗΤΟΟ	ПЛАНКТОН	5 E H T O C	планктон	БЕНТОС
н	G	ilobigerina cipe	nigerina ciperoensis						Cibicidoides amphysiliensis	ВЕРХНЕМЕ- НИЛИТО- ВАЯ			Globigerina postcretacea			
10	G	Globigerina ampliapertura Globigerina sellii - Pseudohastiaerina barbadoensis							Elphidium Karpaticum Cibicidoidos Iopianicus	ло пя-					Turborotalia increbescens	
V H L	G								Grammostomum danvillensis huжне vi vi	НЕЦКАЯ						
0	G	lobigerina tapuriensis				Subbotina vialovi		Subbotina vialovi		МЕНИЛИ- ТОВАЯ						
Н ВЕРХНИЙ	ВЕРХНИИ	Globigerina corpulenta	- G. centralis Globorotalia	Globigerina corpulenta	na ta	Globogerina corpulenta		Globigerina corpulenta Globigerapsis a index	Cyclammina placenta Ammodiscus latus Cycl.amplectens, Asterige- Reophax rina rogalai, planus Brizalina pseudo aenariensis	БЫСТ- РИЦ- КАЯ ПО- ПЕЛЬ СКАЯ	Globigerina corpulenta	Globigerina (Subbotina) corpulenta - Globigerapsis index	Globigerina officinalis	?? Cyclammina is rotundidorsata	Globigerina ampliapertura Globorotalia cocoaensis	Cyclammina rotun- dorsata Ammodiscus Rotalia latus ca, Asterigeri- na rogalai, Almaena taurica
			cocoaensis Globigerapsis semiinvoluta	Globigerapsis index	Cyclammina		Cyclammina				Globigerapsis tropicalis		Globigerapsis index			
	T	Truncorotaloides rohri Orbulinoides beckmanni (Hantkenina alabamensis)		Hantkenina	amplectens Hyperammina lineariformis Asanospira	?	amplectens Hyperammina lineeariformis Asanospira		конических Cibicidoides	ΒЫΓΟΛ-	Hantkenina	Cyclammina Cyclammina amplectens Cystamminella elongata Asanospira walteri	Truncorotaloides	Ammodiscus	Is Globorotalia	Reophax pilulifer
				alabamensis							liebusi		rohri latus	latus latus		
		Acarinina rotur	Globigerapsis		walteri		walteri	?	C. westi C. ventratumidus C. grossoconulus	СКАЯ	Acarinina bullbrooki	Cyclammina amplectens Subbotina frontosa Acarinina Globigerapsis subconglobatus	Turborotalia	urborotalia ) crassata densa	densa – Turborotalia rotundimarginata	yclan
		Acarinina bullbrooki	kugleri Hantkenina aragonensis	Acarinina bullbrooki		Acarinina bullbrooki							(A) crassata densa			Ammodiscus latus
,2	s G	agonensis Acarinina pentaca- merata(G. palmerae) Globorotalia aragonensis		Globorotalia	Glomospira	Globorotalia	Glomospira		Glomospira charoides	MAHSB-	Globorotalia	Dendrophrya Trochamminoides	Globorotalia aragonensis	Glomospira	Globanomalina wilcoxensis	Saccaminoides carpathicus Glomospira
× ×	E C	Globorotalia ma (Globorotalia 1	rginodentata formosa)	urugonensis	Charoides Recurvoides smugarensis		Recurvoides smugarensis		Recurvoides smugarensis Karreriella horrida	СКАЯ		Recurvoides	crater	Globorotalia Subbotinae	Globorotalia subbotinae	
	I G	<i>filoborotalia</i> s	ubbotinae	Globorotalia subbotinae		Globorotalia subbotinae					Globorotalia lensiformis	Rhabdamming discreta	Globorotalia subbotinae			Recurvoides
IEH WIII		Globorotalia velascoensis	velascoensis Globorotalia	Globorotalia pseudomenardii	ovulum Rzehakina fissistomata Nodellum velasco-Stensioina	Globorotalia velascoensis	Hormosina ovulum Rzehakina fissistomata Nodellum	Globorotalia velascoensis	Hormosina ovulum Rzehakina fissistomata Nodellum velascoense Stensioina caucasica	ЯМНЕН- СКАЯ СТРЫЙ-	Globorofalia aequa Globorofalia masainodontata	Rzehakina, Carpathiella, Ovulum, Karreriella Cystamminella pseudopa- uciloculata, Subbotina tri- loculinoides, Morozovella angulata Rhabdammina cylindri- ca cylindrica Carpathiella ovulum	marginodentata . Globorotalia	Zehakina inclusa- Rzehakina complanato wnjnko Wolinso	Globigerina triloculinoides - Globigerina	Trochamminoides Glomospira
AEOL		Globorotalia	pseudomenardii Globorotalia	Glorotalia									aequa			diffundens Rzehakina fissistomata Hormosina ovulum Rzehakina
LA.		Globorotalia pusilla)	Globorotalia angulata	angulata	ense caucasica Anomalino- ides danicus	?	velasco- ense	?					pusilla pussilla			
2	2	Acarinina un	cinata			Globigerina trivialis	Stensioing	Globigerina trivialis Globooonuss				Bogdanovicziella com- planata, Cystamminella gezybowskii. Anomalina	Turborotalia (A.) inconstans praecursoria			
		Globorotalia pseudobulloides (G. trinidadensis)					caucasica Anomalino -	daubjergensis Globorotalia	Anomalinoides danicus	СКАЯ	danica loculi pseud	danica, Subbotina tri- loculinoides, Subbotina pseudobulloides. Subbo-	Globigerina	Rzehakina	vuriuniu	fissistomata Nodellum
	4	ulobigerina 1	ΓαυΓιςα			compressa	'ides danicus	compressa				tina varianta	compressa	epigona		velascoense
ANUARUL	INSTIT	UTULUI DE GEOLOGIE	E ȘI GEOFIZICA, VOL. LIX.													Imprim Atel Inst Geol Geof

## СРАВНЕНИЕ ЗОНАЛЬНЫХ СХЕМ ПАЛЕОГЕНА ВОСТОЧНЫХ И ЗАПАДНЫХ КАРПАТ

Redactor responsabil: M. LUPU Redactor: L. FOTE Traducātori: A. NĂSTASE, M. TOPOR, C. VIDICAN Ilustrajia: V. NIŢU

Dat la cules : februarie 1983. Bun de tipar : august 1983. Tiraj : 750 ex. Hirtie scris I A. Format 70 × 100/56 g. Coli de lipar : 18,5. Comanda 50. Pentru biblioteci indicele de clasificare 55(058).



Cd. 50 – Intreprinderea poligrafică "Informația", str. Brezoianu nr. 23 – 25, București-România





L'Annuaire de l'Institut de Geologie et de Geophysique a été publie le long des années sous les titres suivants:

Anuarul Institutului Geologic al României, t. I-XV (1908-1930)

Anuarul Institutului Geologic al României (Annuaire de l'Institut Géologique de Roumanie) t. XVI-XXII (1931-1943)

Anuarul Comitetului Geologic (Annuaire du Comité Géologique) t. XXIII - XXXIV (1950-1964)

Anuarul Comitetului de Stat al Geologiei (Annuaire du Comité d'Etat pour la Géologie) t. XXXV-XXXVII (1966-1969)

Anuarul Institutului Geologic (Annuaire de l'Institut Géologique) t. XXXVIII-XLII (1970-1974)

Anuarul Institutului de Geologie și Geofizică (Annuaire de l'Institut de Geologie et de Géophysique) depuis le vol. XLIII-1975

### MINISTÈRE DE LA GÉOLOGIE INSTITUT DE GÉOLOGIE ET DE GÉOPHYSIQUE

# ANNUAIRE DE L'INSTITUT de GÉOLOGIE ET DE GÉOPHYSIQUE

TOME LIX



travaux du XII-ème congrès de l'association géologique carpatho-balkanique

STRATIGRAPHIE ET PALÉONTOLOGIE

